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Founding Editors: W. Beiglböck, J. Ehlers, K. Hepp, H. Weidenmüller

Editorial Board

R. Beig, Vienna, Austria
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who endured
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Preface

Quantum chromodynamics (QCD) is the fundamental quantum field theory
of quarks and gluons. In order to discuss it in a mathematically well-defined
way, the theory has to be regularized. Replacing space–time by a Euclidean
lattice has proven to be an efficient approach which allows for both theoret-
ical understanding and computational analysis. Lattice QCD has become a
standard tool in elementary particle physics.

As the title already says: this book is introductory! The text is intended for
newcomers to the field, serving as a starting point. We simply wanted to have a
book which we can put into the hands of an advanced student for a first reading
on lattice QCD. This imaginary student brings as a prerequisite knowledge of
higher quantum mechanics, some continuum quantum field theory, and basic
facts of elementary particle physics phenomenology.

In view of the wealth of applications in current research the topics pre-
sented here are limited and we had to make some painful choices. We discuss
QCD but omit most other lattice field theory applications like scalar theo-
ries, gauge–Higgs models, or electroweak theory. Although we try to lead the
reader up to present day understanding, we cannot possibly address all ongo-
ing activities, in particular concerning the role of QCD in electroweak theory.
Subjects like glueballs, topological excitations, and approaches like chiral per-
turbation theory are mentioned only briefly. This allows us to cover the other
topics quite explicitly, including detailed derivations of key equations. The
field is rapidly developing. The proceedings of the annual lattice conferences
provide information on newer directions and up-to-date results.

As usual, completing the book took longer than originally planned and
we thank our editor Claus Ascheron for his patience. We are very grateful
to many of our colleagues, who offered to read one or the other piece. In
particular we want to thank Vladimir Braun, Dirk Brömmel, Tommy Burch,
Stefano Capitani, Tom DeGrand, Stephan Dürr, Georg Engel, Christian
Hagen, Leonid Glozman, Meinulf Göckeler, Peter Hasenfratz, Jochen Heitger,
Verena Hermann, Edwin Laermann, Markus Limmer, Pushan Majumdar,
Daniel Mohler, Wolfgang Ortner, Bernd-Jochen Schaefer, Stefan Schaefer,



VIII Preface

Andreas Schäfer, Erhard Seiler, Stefan Sint, Stefan Solbrig, and Pierre van
Baal.

It would be surprising if there were not mistakes in this text. We therefore
set up a web companion to this book: http://physik.uni-graz.at/qcdlatt/
On that page we document errata and provide further links and information.

Graz, Christof Gattringer
March 2009 Christian B. Lang
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1

The path integral on the lattice

The basic tool for quantizing fields on the lattice is the Euclidean path inte-
gral. Our first chapter is dedicated to the introduction of the path integral
formalism and to its interpretation. In order to develop the idea without get-
ting lost in technicalities we introduce the path integral for the simplest case,
a scalar field theory. We derive and discuss the two key equations of lattice
field theory. The first key equation is

lim
T→∞

1
ZT

tr
[
e−(T−t) Ĥ Ô2 e−t Ĥ Ô1

]
=

∑

n

〈0|Ô2|n〉〈n|Ô1|0〉 e−t En , (1.1)

where ZT is a normalization factor given by ZT = tr[e−TĤ ]. The left-hand
side of (1.1) is the Euclidean correlation function of two operators Ô1, Ô2 and
Ĥ is the Hamiltonian of the system. On the right-hand side the Euclidean
correlator is expressed as a sum over eigenstates of the Hamiltonian operator
labeled by n. The terms in the sum contain matrix elements of the operators
Ôi taken between the vacuum |0〉 and the physical states |n〉. These matrix
elements are weighted with exponentials containing the energy eigenvalues En

of the system. The right-hand side of (1.1) can thus be used to extract matrix
elements of operators as well as the energy spectrum of the theory.

In the second key equation

1
ZT

tr
[
e−(T−t) Ĥ Ô2 e−t Ĥ Ô1

]
=

1
ZT

∫
D[Φ] e−SE [Φ] O2[Φ(. , t)] O1[Φ(. , 0)] ,

(1.2)
the Euclidean correlator on the left-hand side is expressed as a path integral,
which is an integral over all possible configurations of the field Φ. This is a
crucial point. The left-hand side is formulated in the operator language of
quantum field theory. The right-hand side knows nothing about field opera-
tors. In the integrand the two operators Ôi are translated to functionals Oi of
the fields and then weighted with the Boltzmann factor containing the clas-
sical Euclidean action SE [Φ]. The right-hand side of (1.2) can be evaluated
numerically on the lattice.

Gattringer, C., Lang, C.B.: The Path Integral on the Lattice. Lect. Notes Phys. 788,
1–23 (2010)
DOI 10.1007/978-3-642-01850-3 1 c© Springer-Verlag Berlin Heidelberg 2010



2 1 The path integral on the lattice

1.1 Hilbert space and propagation in Euclidean time

This first section is dedicated to a detailed discussion of the Euclidean correla-
tors (1.1). Before we actually introduce the Euclidean correlators we prepare
the ground with a brief summary of the definition and properties of Hilbert
spaces (see, e.g., [1–4] for introductory texts).

1.1.1 Hilbert spaces

A Hilbert space H is an infinite dimensional vector space. Its elements can
be added and multiplied with scalars and H is closed under these operations,
i.e., for vectors |u〉, |v〉 ∈ H and complex numbers α, β we find

α |u〉 + β |v〉 ∈ H . (1.3)

We will often refer to vectors in Hilbert space as states. In addition, a Hilbert
space is equipped with a scalar product, i.e., a sesquilinear functional 〈u|v〉
which maps a vector |v〉 and a dual vector 〈u| into the complex numbers. The
scalar product obeys the properties (the ∗ denotes complex conjugation)

〈u|v〉 = 〈v|u〉∗ , (1.4)
〈w|αu + β v〉 = α 〈w|u〉 + β 〈w|v〉 . (1.5)

The Hilbert spaces we are interested in here have a complete, countable
basis, i.e., a set of linearly independent vectors |en〉 such that every vector
|u〉 ∈ H can be written as a linear combination of the basis elements,

|u〉 =
∑

n

αn |en〉 , (1.6)

where the coefficients αn are complex numbers. If the basis vectors |en〉 obey
〈em|en〉 = δmn the basis is called orthonormal.

An operator Ô acting on the Hilbert space H maps vectors onto other
vectors in the Hilbert space,

|u〉 ∈ H −→ Ô|u〉 ∈ H . (1.7)

The corresponding adjoint operator Ô† is defined by

〈u|Ô|v〉 = 〈v|Ô†|u〉∗ . (1.8)

If the operator obeys Ô† = Ô for all H it is called self-adjoint or hermitian.
An eigenvector or eigenstate |u〉 of an operator Ô is a vector obeying the

equation
Ô |u〉 = λ |u〉 , (1.9)

for some complex number λ, the so-called eigenvalue. The eigenvalues of
self-adjoint operators are real and eigenvectors with different eigenvalues are
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orthogonal to each other. Eigenvectors with equal eigenvalues can be made
orthogonal and after normalization the eigenvectors of a self-adjoint operator
form an orthonormal set. For a large class of operators the corresponding set
of eigenvectors provides an orthonormal basis for the Hilbert space.1

The unit operator 1 can be written in terms of the vectors of a complete
orthonormal basis as

1 =
∑

n

|en〉〈en| . (1.10)

This is also called the completeness relation. Finally, we define the trace tr[Ô]
of an operator as

tr[Ô] =
∑

n

〈en|Ô|en〉 , (1.11)

where the sum runs over the vectors of an orthonormal basis. Operators in
which the trace exists are called trace class. We stress that the trace is in-
variant under a change of the basis used for its evaluation since different
orthonormal bases are related by unitary transformations.

In some of the calculations in this book we will use non-countable complete
sets of states, such as momentum eigenstates. For these sets the sums in (1.6),
(1.10), and (1.11) are replaced by integrals.

1.1.2 Remarks on Hilbert spaces in particle physics

Let us add a few remarks about the Hilbert spaces relevant to particle physics.
We do not attempt a systematic construction of these Hilbert spaces (see, e.g.,
[4]) but concentrate on discussing some properties needed here.

An important feature of Hilbert spaces in particle physics is the fact that
their vectors can be multiparticle states. The underlying physical reason is
that, when relativistic field theories are used to describe a physical system,
particle creation and annihilation processes take place. In order to incorpo-
rate this feature, the Hilbert space is a direct sum of 0-particle, 1-particle,
2-particle, etc., Hilbert spaces. Such a Hilbert space is known as a Fock space.

A typical example of a vector in a Fock space is a state with a pion at
some position x and a proton at some other position y (a 2-particle state).
An example of a 1-particle state is a state with a single ∆-baryon at the
origin. States of particles may be described by their quantum numbers and
their position, but also the particle momentum can be used to characterize
the state. An example of such a case would be a state consisting of two pions
with momenta p and −p.

1We remark that our short summary of Hilbert spaces focuses on the algebraic
properties we actually need in subsequent calculations. For more subtle aspects
such as the completeness of an eigensystem or the discussion of eigenvectors of the
continuous spectrum we refer the reader to the more mathematical literature [5, 6].
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The 0-particle state is referred to as the vacuum and is denoted by |0〉. We
remark that in some situations, such as spontaneous breaking of symmetries,
the vacuum state is not necessarily unique.

An important class of operators are field operators creating and annihilat-
ing particles. In many cases the adjoint of a field operator is the field operator
for the corresponding antiparticle. An example which illustrates this feature
is the pion system: Let Ô†

π+ be the operator that creates a state with the
quantum numbers of the π+ meson (actually this operator is constructed as
a product of quark and antiquark field operators). The adjoint Ôπ+ of this
operator either annihilates that state or creates a state with the quantum
numbers of its antiparticle, the π− meson. We will discuss the construction of
hadron operators and their properties in more detail in Chap. 6.

We remark that all the states and operators we have discussed so far are
time independent. Their evolution in Euclidean time will be discussed now.

1.1.3 Euclidean correlators

Having prepared the ground we can now start to discuss Euclidean correlators.
Let us begin with defining the Euclidean correlator 〈O2(t)O1(0)〉T by

〈O2(t)O1(0)〉T =
1

ZT
tr

[
e−(T−t)Ĥ Ô2 e−tĤ Ô1

]
, (1.12)

where the normalization factor ZT is given by

ZT = tr
[
e−TĤ

]
. (1.13)

Later we will show that in the Euclidean path integral formalism the normal-
ization factor ZT is a partition function of a system of statistical mechanics.
Here Ô1 and Ô2 can be operators that create or annihilate states, or opera-
tors that measure observables or combinations of all of these. The self-adjoint
operator Ĥ is the Hamiltonian operator of the system which measures the
energy in the system and also governs the time evolution. The parameters
T and t are real, non-negative numbers denoting Euclidean time distances of
propagation. Whereas t is the actual distance of interest to us, T is a formal
maximal distance, which will eventually be taken to infinity. The exponentials
of the Hamiltonian operator can in most cases (bounded operators) be defined
through their power series expansion

e−t Ĥ =
∞∑

j=0

(−t)j

j !
Ĥ j . (1.14)

Let us evaluate the partition function ZT . According to the definition
(1.11) of the trace we need to sandwich the operator between vectors of an
orthonormal basis and then sum over all basis vectors. The result is indepen-
dent of which particular orthonormal basis one uses. For the trace in (1.13) a
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natural choice is the basis of the eigenstates of Ĥ. Denoting the eigenstates
of Ĥ as |n〉, the corresponding eigenvalue equation reads

Ĥ |n〉 = En |n〉 . (1.15)

The energy eigenvalues En are real numbers and, assuming discrete spectrum,
we order the states such that

E0 ≤ E1 ≤ E2 ≤ E3 . . . (1.16)

The index n labels all the combinations of quantum numbers describing the
states such that their energies are ordered according to (1.16).

When using the basis |n〉 for evaluating the trace in (1.13) one finds

ZT =
∑

n

〈n|e−T Ĥ |n〉 =
∑

n

e−T En , (1.17)

where in the second step we used (1.15) and the normalization of the eigen-
states, 〈n|n〉 = 1. The partition function ZT is simply a sum over the expo-
nentials of all energy eigenvalues En.

The Euclidean correlator 〈O2(t)O1(0)〉T can be evaluated in a similar way.
When computing the trace as before and inserting the unit operator in the
form (1.10) to the right of Ô2 we obtain

〈O2(t)O1(0)〉T =
1

ZT

∑

m,n

〈m|e−(T−t) ĤÔ2|n〉〈n|e−t Ĥ Ô1|m〉

=
1

ZT

∑

m,n

e−(T−t) Em 〈m|Ô2|n〉 e−t En 〈n|Ô1|m〉 . (1.18)

The next step is to insert the expression (1.17) for ZT into the last equation
and to pull out a factor of e−T E0 both in the numerator and in the denomi-
nator. This leads to

〈O2(t)O1(0)〉T =
∑

m,n 〈m|Ô2|n〉 〈n|Ô1|m〉 e−t ∆En e−(T−t) ∆Em

1 + e−T ∆E1 + e−T ∆E2 + . . .
, (1.19)

where we defined
∆En = En − E0 . (1.20)

Thus, the Euclidean correlator 〈O1(0)O2(t)〉T depends only on the energies
normalized relative to the energy E0 of the vacuum. It is exactly these energy
differences that can be measured in an experiment. For convenience from now
on we use En to denote the energy differences relative to the vacuum, i.e., we
use En instead of ∆En. This implies that the energy E0 of the vacuum |0〉 is
normalized to zero.

We now analyze (1.19) in the limit T → ∞. In this limit (assuming that the
vacuum is unique and E1 > 0) the denominator is equal to 1. Similarly, in the



6 1 The path integral on the lattice

numerator only those terms where Em = 0 survive, i.e., only the contributions
where |m〉 = |0〉. We thus obtain

lim
T→∞

〈O2(t)O1(0)〉T =
∑

n

〈0|Ô2|n〉〈n|Ô1|0〉 e−t En . (1.21)

The expression which we have derived here will be central for the interpre-
tation of lattice field theory. It is a sum of exponentials and each exponent
corresponds to an energy level. These energies can be calculated as follows:
Let us assume that one wants to compute the energy of a proton p. For Ô1

one chooses an operator Ô†
p which creates from the vacuum a state with the

quantum numbers of the proton and for Ô2 the adjoint of that operator, the
operator Ôp that annihilates the proton. Then the matrix element 〈n|Ô†

p|0〉
vanishes for all states 〈n| that do not have the quantum numbers of the pro-
ton. The first state 〈n| where we find a contribution is the state describing
a proton, i.e., 〈n| = 〈p|. Further up in the ladder of states one finds excited
proton states 〈p′| , 〈p′′|, . . ., which also have nonvanishing overlap with Ô†

p|0〉.
We thus obtain

lim
T→∞

〈
Op(t)Op(0)†

〉
T

= |〈p|Ô†
p|0〉|2 e−t Ep + |〈p′|Ô†

p|0〉|2 e−t Ep′ + . . . , (1.22)

where we made use of (1.8) to simplify the coefficients in front of the
exponentials. For sufficiently large t the sub-leading terms are strongly sup-
pressed since Ep′ > Ep. Therefore, at sufficiently large t we obtain Ep from
the exponential decay of the Euclidean correlator. When using other operators
Ô1, Ô2 that create other states from the vacuum, we can extract the ground
state energies for all particles in the spectrum of the theory in a way similar
to what we have just demonstrated for the proton. Furthermore, one can also
study the matrix elements 〈n|Ô|0〉. Since Ô can be a product of several oper-
ators, a wide range of matrix elements is accessible. Such techniques will be
discussed in great detail in Chaps. 6 and 11.

This completes our discussion of the properties of Euclidean correlators. In
the next section we introduce the path integral as a technique for calculating
the correlators (1.12).

Let us conclude this section with a short remark on the relation of our
Euclidean correlators to real time, Minkowski quantum mechanics. In the
Heisenberg picture, where the operators are time dependent, an operator at
time τ is given by (note that we use ! ≡ 1)

Ô(τ) = ei τ Ĥ Ô e−i τ Ĥ . (1.23)

Thus, the Euclidean correlator (1.12) can be seen as the correlator of op-
erator Ô1 at time 0 with operator Ô2 at imaginary time t = i τ times an
extra time transporter exp(−TĤ) which projects to the vacuum for T → ∞.
Four-vectors with real-time τ correspond to Minkowski metric. When one
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switches to imaginary time t = i τ , the relative minus sign between time- and
space-components vanishes and the metric becomes Euclidean; thus, the name
Euclidean correlators for the objects defined in (1.12).

In the next section, where we discuss the path integral representation of
the Euclidean correlator, we will encounter a similar transformation of the
metric. The change from real to imaginary time is often referred to as Wick
rotation. We stress, however, that it is not essential to interpret t as time at all.
The expression (1.12) can be simply viewed as a convenient mathematical tool
which allows one to extract energy levels and matrix elements of operators.

1.2 The path integral for a quantum mechanical system

The Euclidean correlators (1.12) which we have introduced and analyzed in
Hilbert space in the last section are now rewritten as path integrals – a concept
introduced by Feynman. In Sect. 1.3 we will derive the second key equation of
lattice field theory, (1.2). However, as a preparatory step, in this section we
first derive the path integral for a simple quantum mechanical system. This
allows us to focus on the essential steps of the construction without too much
technicalities. In Sect. 1.3 we will repeat the derivation of the path integral
for a scalar field theory.

The quantum mechanical system we use in our initial presentation of the
path integral is a single particle in a potential U . To simplify things further we
restrict the motion of the particle to the x-axis only. The system is described
by the Hamiltonian

Ĥ =
p̂ 2

2m
+ Û . (1.24)

The canonical quantization condition is given by the commutator

[x̂, p̂ ] = i , (1.25)

(we use ! ≡ 1) and implies that the momentum operator is given by

p̂ = −i
d

dx
. (1.26)

For this system we want to compute the partition function according to (1.13)

ZT = tr
[
e−TĤ

]
=

∫
dx 〈x|e−TĤ |x〉 . (1.27)

The second step in this equation already expresses our intent to use position
states |x〉 to compute the trace.

Let us begin with the evaluation of the necessary matrix elements for the
free case:
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〈x|e−t p̂ 2/2m|y〉 =
∫

dp 〈x|e−t p̂ 2/2m|p〉〈p|y〉 =
∫

dp 〈x|p〉〈p|y〉 e−t p2/2m .

(1.28)
In the first step we have inserted the unit operator according to (1.10) using
the momentum eigenstates |p〉. In the second step we have used p̂ |p〉 = p|p〉.
Note that in the exponent on the right-hand side of (1.28), p is no longer an
operator but a number – the momentum.

Using the real space representation of the momentum eigenstates, i.e., the
plane waves

〈x|p〉 =
1√
2π

eipx , (1.29)

we find for our matrix element

〈x|e−t p̂ 2/2m|y〉 =
1
2π

∫
dp eip(x−y) e−t p2/2m =

√
m

2πt
e−(x−y)2 m/2t . (1.30)

In the last step we used the well-known Gaussian integral (c, b real, c > 0)
∫ ∞

−∞
dx e−c x2

e±i b x =
√
π

c
e−b2/4c . (1.31)

Let us now look at the general case with nonvanishing potential Û . The
problem here is that the two terms in the Hamiltonian (1.24) do not commute
with each other, making the evaluation of the exponential of Ĥ somewhat
involved. We split the potential Û symmetrically, and for an infinitesimal
Euclidean timestep ε we write

e−εĤ = e−εÛ/2 e−ε p̂ 2/2m e−εÛ/2 (1 + O(ε)) . (1.32)

This formula can be obtained from expanding both sides in ε. We abbreviate
the leading term as

Ŵε = e−εÛ/2 e−ε p̂ 2/2m e−εÛ/2 , (1.33)

and find

〈x|Ŵε|y〉 = e−εU(x)/2 〈x|e−ε p̂ 2/2m|y〉 e−εU(y)/2

=
√

m

2πε
e−εU(x)/2 e−εU(y)/2 e−(x−y)2 m/2ε . (1.34)

In the first step we have used Û |x〉 = U(x)|x〉, where U(x) is a real number –
the value of the potential at x. In the second step we inserted (1.30).

We can build up a finite Euclidean timestep T from infinitesimal steps ε
using the Trotter formula (see, e.g., [7] for a proof),

e−TĤ = lim
NT →∞

Ŵ NT
ε with ε =

T

NT
. (1.35)
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We obtain

ZT =
∫

dx0〈x0|e−TĤ |x0〉 = lim
NT →∞

∫
dx0〈x0|ŴNT

ε |x0〉 (1.36)

= lim
NT →∞

∫
dx0...dxNT −1〈x0|Ŵε|x1〉...〈xNT −2|Ŵε|xNT −1〉〈xNT −1|Ŵε|x0〉

= lim
NT →∞

CNT

∫
dx0...dxNT −1 exp



− ε
NT −1∑

j=0

(
m

2
(xj−xj+1)2

ε2
+ U(xj)

)

.

In this derivation we have inserted unit operators in the form
∫

dxi|xi〉〈xi|
and then used the result (1.34) with the abbreviation C =

√
m/(2πε).

Our expression (1.36) contains the limit NT → ∞. Since we are aiming at
a numerical evaluation of our path integral with a computer, the number of
steps NT we can use has to be finite. Hence we define an approximation of
the partition function (we periodically identify xNT ≡ x0)

Zε
T = CNT

∫
dx0 . . . dxNT −1 exp



− ε
NT −1∑

j=0

(
m

2

(
xj+1−xj

ε

)2

+ U(xj)

)

 ,

(1.37)
where the stepsize ε and the Euclidean time are related by T = εNT .

The sum in the exponent has an interesting interpretation. Obviously, for
smooth paths

xj+1 − xj

ε
= ẋ(t) + O(ε) with t = j ε ,

ε
NT −1∑

j=0

. . . =
∫ T

0
dt . . . + O(ε) with T = NT ε . (1.38)

Thus we can identify

ε
NT −1∑

j=0

(
m

2

(
xj+1 − xj

ε

)2

+ U(xj)

)
=

∫ T

0
dt

(m

2
ẋ(t)2 + U (x(t))

)
+ O(ε).

(1.39)
The expression on the right-hand side is called the Euclidean action SE .
It is obtained from the usual action S when switching from real-time τ to
imaginary-time t = iτ and rotating the contour of integration:

S[x, ẋ] =
∫ T

0
dτ

(m

2
ẋ(τ)2 − U (x(τ))

)
→ i

∫ T

0
dt

(m

2
ẋ(t)2 + U (x(t))

)
= iSE [x, ẋ].

(1.40)
Let us summarize: We have found that we can construct an approximation
Zε

T of the partition function in the form of (1.37). In this approximation we



10 1 The path integral on the lattice

x x x x1 3 4 . . . . . . . x 1x 0 2 NT
x0

Fig. 1.1. A discretized path contributing in (1.37)

divide the Euclidean time interval T into NT steps of size ε (using periodic
boundary conditions). At each step we insert a variable xj which we integrate
from −∞ to +∞. The collection of values xj can be interpreted as a path
(compare Fig. 1.1) and the integral is over all possible paths. The integrand
is the exponential (1.37) of the Euclidean action for the discretized path.

In the next section we will develop a path integral representation for a
system much closer to our target theory QCD. We will consider a scalar
field theory. The technical steps of the construction – free case, infinitesimal
timesteps, Trotter formula – will be the same. However, since we are dealing
with a quantum field theory with many degrees of freedom, the calculation,
in particular the corresponding notation, will be a little bit more involved.

1.3 The path integral for a scalar field theory

We now derive the key equation (1.2) for a scalar field theory. Although this
is already a field theory, it has a simpler structure than QCD. This allows us
to focus on the central points of the derivation of the path integral for a field
theory without having to worry too much about technicalities. Although our
presentation is self contained we recommend [8, 9] for an introductory reading
about the canonical quantization of the scalar field, which is our starting point.

1.3.1 The Klein–Gordon field

Let us begin by recalling the classical action and equations of motion of the
scalar field in Minkowski space. We consider a real scalar field Φ(t,x). The
corresponding action S is an integral over space-time

S =
∫

dt d3x L (Φ(t,x) , ∂µΦ(t,x)) , (1.41)

with the Lagrangian density L given by

L(Φ, ∂µΦ) =
1
2

(∂µΦ)(∂µΦ) − m2

2
Φ2 − V (Φ)

=
1
2
Φ̇ 2 − 1

2
(∇Φ)2 − m2

2
Φ2 − V (Φ) . (1.42)

This is a system of coupled oscillators. We stress again that this expres-
sion is in Minkowski space, i.e., in the second step we used the metric
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gµν = diag(1,−1,−1,−1) to rewrite the kinetic term. In the action we also
allow for a potential term V (Φ). A standard example is V (Φ(t,x)) = λΦ(t,x)4.
Using the Euler–Lagrange equations

∂µ

(
∂L

∂(∂µΦ)

)
− ∂L

∂Φ
= 0 , (1.43)

we can derive the classical equation of motion

∂µ(∂µΦ) + m2 Φ+ V ′(Φ) = 0 . (1.44)

In the absence of a potential this is the Klein–Gordon equation.
As a next step we quantize the system using the canonical formalism. For

this purpose we need the Hamiltonian which we obtain from the Lagrangian
density. The canonical momentum Π(t,x) is defined by

Π(t,x) =
∂

∂ Φ̇(t,x)
L (Φ(t,x) , ∂µΦ(t,x)) = Φ̇(t,x) , (1.45)

and the Hamiltonian function H is obtained as the Legendre transform

H =
∫

d3xΠ(t,x) Φ̇(t,x) −
∫

d3x L (Φ(t,x) , ∂µΦ(t,x)) (1.46)

=
∫

d3x

(
1
2
Π(t,x)2 +

1
2

(∇Φ(t,x))2 +
m2

2
Φ(t,x)2 + V (Φ(t,x))

)
.

The Hamiltonian function is the starting point for the quantization of the
system in the continuum. Upon quantization, the Hamiltonian function H and
the fields Φ(t,x) and Π(t,x) turn into Schrödinger operators Ĥ, Φ̂(x), Π̂(x).
The Hamiltonian operator reads (up to normal ordering)

Ĥ =
∫

d3x

(
1
2
Π̂(x)2 +

1
2

(
∇Φ̂(x)

)2
+

m2

2
Φ̂(x)2 + V

(
Φ̂(x)

))
. (1.47)

All time arguments are gone, and the time evolution of operators is given
by (1.23). The operators Φ̂, Π̂ obey the canonical equal time commutation
relations (! ≡ 1)

[
Φ̂(x), Π̂(y)

]
= i δ(x − y) ,

[
Φ̂(x), Φ̂(y)

]
= 0 ,

[
Π̂(x), Π̂(y)

]
= 0 . (1.48)

We now leave the canonical path and follow a different strategy by introducing
the lattice as a cutoff before we quantize the system.

1.3.2 Lattice regularization of the Klein–Gordon Hamiltonian

In order to calculate something from a quantum field theory in a mathemat-
ically well-defined way, an ultraviolet regulator must be introduced. Such a
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regulator is necessary to make the expressions finite. In continuum pertur-
bation theory the regulator can, e.g., be introduced by using dimensional
regularization, Pauli–Villars regularization or a momentum cutoff. A different
approach is chosen in lattice field theory.

The central idea is to replace the continuous space by a 3D finite lattice
Λ3:

x ⇒ an , ni = 0, 1, . . . , N − 1 for i = 1, 2, 3 . (1.49)

The lattice constant a has the physical dimension of length. The vector n with
integer-valued components, n1, n2, n3, labels the lattice sites. The operators
Φ̂(n) and Π̂(n) now live only on the lattice sites and we stress this fact by
replacing the space argument x by the label of the lattice site n. Since each
component ni runs from 0 to N − 1, we have a total of N3 lattice sites and
the lattice system thus has 2N3 degrees of freedom (Φ̂ and Π̂ on each lattice
site). For any finite system one has to decide what to do at the boundary. We
choose periodic boundary conditions, i.e., we identify nj = N with nj = 0.

For a lattice regularization of the Hamiltonian operator (1.47) we also
need to discretize the derivatives ∇Φ̂(x). Using the Taylor series expansion of
Φ̂(x), it is easy to see that for small lattice constant a the derivative may be
approximated as

∂j Φ̂(x) =
Φ̂(n + ĵ ) − Φ̂(n − ĵ )

2a
+ O(a2) , (1.50)

where ĵ denotes the unit vector in the j-direction. Using this definition for
the derivative, we obtain a lattice version of the Hamiltonian operator (1.47):

Ĥ =a3
∑

n∈Λ3



1
2
Π̂(n)2+

1
2

3∑

j=1

(
Φ̂(n+ĵ )−Φ̂(n−ĵ )

2a

)2

+
m2

2
Φ̂(n)2+V

(
Φ̂(n)

)


 .

(1.51)
The integral

∫
d 3x has been replaced by the sum a3

∑
n∈Λ3

. The Hamilto-
nian describes a system with a finite number of degrees of freedom Φ̂(n) and
their corresponding conjugate momenta Π̂(n). The canonical quantization
condition is given by the commutators

[
Φ̂(n) , Π̂(m)

]
= i a−3 δn m , (1.52)

[
Φ̂(n) , Φ̂(m)

]
= 0 ,

[
Π̂(n) , Π̂(m)

]
= 0 . (1.53)

When comparing the new quantization conditions (1.52) and (1.53) to their
continuum counterparts one sees that the Dirac-delta in (1.48) is replaced by
Kronecker deltas δnm = δn1m1 δn2m2 δn3m3 , as is usual for discrete degrees of
freedom. The factor a−3 on the right-hand side of (1.52) is needed for getting
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the dimensions right. When denoting the dimension of length by - we find for
the dimensions [ . . . ] of the quantities involved (using ! ≡ 1):

[S] = 1, [H] =
1
-
, [a] = -, [Φ̂] =

1
-
, [Π̂] =

1
-2

, [m] =
1
-

. (1.54)

Thus the factor a−3 in (1.52) is necessary in order to have objects of equal
dimensions on both sides. This factor also matches the dimensions in the
continuum formula (1.48) since the Dirac-delta there also has dimension -−3.

The commutators (1.52) and (1.53) are obeyed when the momentum op-
erators are represented as derivatives

Π̂(n) = − i
a3

∂

∂ Φ(n)
. (1.55)

Using this representation we can write the Hamiltonian operator for the Klein–
Gordon field on the lattice in its final form as

Ĥ = Ĥ0 + Û , (1.56)

Ĥ0 = a3
∑

n∈Λ3

1
2

(
− i

a3

∂

∂ Φ(n)

)2

= − 1
2 a3

∑

n∈Λ3

∂2

∂ Φ(n)2
,

Û = a3
∑

n∈Λ3



1
2

3∑

j=1

(
Φ̂(n+ĵ ) − Φ̂(n−ĵ )

2a

)2

+
m2

2
Φ̂(n)2 + V

(
Φ̂(n)

)


 .

We have split the Hamilton operator into two parts: the free part Ĥ0, which
contains the derivatives, and the interaction part Û . This splitting is useful
for the calculation of the Euclidean correlators.

It is convenient to introduce a set of eigenstates of the field operators Φ̂(n),
equivalent to the position states |x〉 of quantum mechanics. The condition
(1.52) is a generalization of the condition [x̂, p̂ ] = i! in ordinary quantum
mechanics. In a similar way the states |Φ〉 are a generalization of the position
states |x〉. The action of the operators Φ̂(n) on |Φ〉 is defined as

Φ̂(n) |Φ〉 = Φ(n) |Φ〉 . (1.57)

The application of the operator Φ̂(n) on an eigenstate |Φ〉 thus gives as the
eigenvalue the value Φ(n) of the field at the lattice point n. Consequently, the
state |Φ〉 is labeled by the values of the field at all lattice points, i.e., by the
set {Φ(n),n ∈ Λ3}. The states |Φ〉 are orthogonal and complete:

〈Φ′|Φ〉 = δ(Φ′ − Φ) ≡
∏

n∈Λ3

δ (Φ′(n) − Φ(n)) , (1.58)

1 =
∫ ∞

−∞
DΦ |Φ〉〈Φ| with DΦ =

∏

n∈Λ3

dΦ(n) . (1.59)
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1.3.3 The Euclidean time transporter for the free case

Having discussed the Hamiltonian of the scalar field and its lattice discretiza-
tion, we can now return to our original problem, the calculation of the
Euclidean correlators (1.12) and the partition function (1.13). In both these
expressions we encounter Euclidean time transporters exp(−tĤ). For the full
Hamiltonian operator Ĥ the calculation of matrix elements of the time trans-
porter is not possible in closed form. However, for the free part Ĥ0 this is an
easy exercise which we perform using the eigenstates of Ĥ0.

The free Hamiltonian operator Ĥ0, as represented in (1.56), is a sum over
second derivatives, i.e., a sum over squares of momentum operators. It is well-
known from quantum mechanics that the eigenstates of a derivative operator
are the momentum eigenstates |Π〉: plane waves.2 Since Ĥ0 is a sum over N3

derivatives, the eigenstate is a product over N3 plane waves, one for each field
component Φ(n). Each plane wave is characterized by a wave number Π(n).
The whole eigenstate is then labeled by the set of all these wave numbers and
we denote the eigenstate as |Π〉, which in field representation is given by

〈Φ|Π〉 =
∏

n∈Λ3

√
a3

2π
e i a3 Π(n) Φ(n) . (1.60)

The eigenstates in (1.60) are normalized such that the unit operator reads

1 =
∫ ∞

−∞
DΠ |Π〉〈Π| with DΠ =

∏

n∈Λ3

dΠ(n) . (1.61)

The action of the free Hamiltonian Ĥ0 on |Π〉 gives rise to

〈Φ|Ĥ0|Π〉 = − 1
2 a3

∑

n∈Λ3

∂2

∂ Φ(n)2
〈Φ|Π〉 =

a3

2

∑

n∈Λ3

Π(n)2 〈Φ|Π〉 . (1.62)

Thus the eigenvalues of Ĥ0 are given by (a3/2)
∑

n Π(n)2. It is important to
realize that in both Eqs. (1.60) and (1.62) the quantities Φ(n) and Π(n) are
no longer operators, but real numbers. They are the values of the field and
the wave number at the lattice site n.

With the help of the eigenstates (1.60) we can now compute matrix ele-
ments of the Euclidean time transporter of the free theory

〈Φ′|e−tĤ0 |Φ〉 =
∫
DΠ 〈Φ′|e−tĤ0 |Π〉〈Π|Φ〉

=
∫
DΠ 〈Φ′|Π〉〈Π|Φ〉 e−t a3/2

∑
n Π(n)2 , (1.63)

where in the first step we have inserted the unit operator written in the form
(1.61) and in the second step the eigenvalue equation (1.62) was used. Inserting

2These are not plane waves in real space, but plane waves of the fields Φ(n).
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(1.60) into the last expression, we have a product of Gaussian integrals that
can be solved:

〈Φ′|e−tĤ0 |Φ〉 =
∏

n∈Λ3

a3

2π

∫ ∞

−∞
dΠ(n) ei a3 Π(n)(Φ′(n)−Φ(n)) e−t a3Π(n)2/2 =

∏

n∈Λ3

√
a3

2π t
e−a3/(2 t) (Φ′(n)−Φ(n))2

=
(

a3

2π t

)N3/2

e−a3/(2 t)
∑

n(Φ′(n)−Φ(n))2

,

(1.64)

where in the last step we used the Gaussian integral (1.31).

1.3.4 Treating the interaction term with the Trotter formula

When we switch from the free case to including the potential Û we again have
to build up a finite step t in Euclidean time from infinitesimal steps using the
Trotter formula (1.35). Like for the quantum mechanical system of the last
section we define

Ŵε = e−ε Û/2 e−εĤ0 e−ε Û/2 . (1.65)

Using the Trotter formula (1.35) we find

〈Φ′|e−t Ĥ |Φ〉 = lim
nt→∞

〈Φ′|Ŵ nt
ε |Φ〉 = (1.66)

lim
nt→∞

∫
DΦ1DΦ2 . . . DΦnt−1 〈Φ′|Ŵε|Φnt−1〉〈Φnt−1|Ŵε|Φnt−2〉 . . . 〈Φ1|Ŵε|Φ〉 .

In last step we have inserted the unit operator nt−1 times in the form (1.59).
What remains to be done is the calculation of the matrix elements

〈Φi+1|Ŵε|Φi〉 appearing in (1.66). We first note that, due to (1.56) and (1.57),

Û |Φ〉 = U [Φ] |Φ〉 , (1.67)

with

U [Φ] = a3
∑

n∈Λ3



1
2

3∑

j=1

(
Φ(n+ĵ ) − Φ(n−ĵ )

2a

)2

+
m2

2
Φ(n)2 + V (Φ(n))



 .

(1.68)

We stress that U [Φ] is a number, i.e., the classical interaction term evaluated
for the classical fields Φ(n). Using (1.64) and (1.67) we obtain

〈Φi+1|Ŵε|Φi〉 = 〈Φi+1|e−ε Û/2e−εĤ0e−ε Û/2|Φi〉 (1.69)

= e−ε U [Φi+1]/2 〈Φi+1|e−εĤ0 |Φi〉 e−ε U [Φi]/2

= CN3
e−ε U [Φi]/2 −a3/(2 ε)

∑
n(Φ(n)i−Φ(n)i+1)

2 − ε U [Φi+1]/2 .
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We have introduced the abbreviation C for the factor
√

a3/2π ε. Again we
emphasize that the right-hand side of (1.69) is a real number. It is the matrix
element of the Euclidean time transporter for infinitesimal time Ŵε. These
matrix elements may be combined in (1.66) to obtain the matrix element for
a transport by a finite amount of Euclidean time.

1.3.5 Path integral representation for the partition function

Let us now use the two Eqs. (1.66) and (1.69) to compute the partition func-
tion ZT defined in (1.13). When the trace in this equation is evaluated using
states |Φ0〉, we find

ZT =
∫

DΦ0 〈Φ0|e−TĤ |Φ0〉 = lim
NT →∞

∫
DΦ0 〈Φ0|Ŵ NT

ε |Φ0〉 , (1.70)

with T = NT ε. We have already remarked that we are aiming at implementing
the path integral in a numerical simulation and thus we cannot perform the
limit NT → ∞, since a computer can only cope with a finite number of
degrees of freedom. Therefore, we have to work with a finite resolution ε and
thus obtain only an approximation of the exact partition function. We denote
this approximation by Zε

T . Inserting again NT − 1 sets of complete states and
using the expression (1.69) for the matrix elements 〈Φi+1|Ŵε|Φi〉 we obtain

Zε
T =

∫
DΦ0 〈Φ0|Ŵ NT

ε |Φ0〉

=
∫
DΦ0 . . . DΦNT −1 〈Φ0|Ŵε|ΦNT −1〉〈ΦNT −1|Ŵε|ΦNT −2〉 . . . 〈Φ1|Ŵε|Φ0〉

= CN3 NT

∫
DΦ0 . . . DΦNT −1 e−SE [Φ] , (1.71)

with

SE [Φ] =
1
2

NT −1∑

j=0

a3
∑

n∈Λ3

1
ε

(Φ(n)j+1 − Φ(n)j)
2 + ε

NT −1∑

j=0

U [Φj ] . (1.72)

We remark that in the first sum we have continued the index j periodically
by identifying j = NT with j = 0.

The expression for SE in (1.72) can be simplified by introducing a more
compact notation Φ(n, n4) ≡ Φ(n)n4 . This corresponds to introducing a 4D
lattice Λ defined as

Λ = {(n, n4) | n ∈ Λ3, n4 = 0, 1, . . . , NT − 1} , (1.73)

where we have also relabeled j to n4. Note that the lattice Λ is periodic
in all four directions since it inherits the spatial periodicity of the spatial
components of Λ3. With this notation SE reads
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SE [Φ] = εa3
∑

(n,n4)∈Λ

(
1
2

(
Φ(n, n4+1) − Φ(n, n4)

ε

)2

+ (1.74)

1
2

3∑

j=1

(
Φ(n+ĵ , n4) − Φ(n−ĵ , n4)

2a

)2

+
m2

2
Φ(n, n4)2 + V (Φ(n, n4))



 .

As in the quantum mechanical problem of the last section, the expression
(1.74) for SE again is a discretization of the Euclidean action: The first term on
the right-hand side can be interpreted as the square of a discretized derivative
in 4-direction. The sum over Λ together with the factor εa3 is a discretization
of an integral over space and Euclidean time. With these two identifications
the expression (1.74) is very similar to the action of the Klein–Gordon field
given in (1.41) and (1.42). The only differences are an overall minus sign and
a relative sign between the time derivative in (1.42) and the rest of the terms.
If one rotates the time in (1.42) into the imaginary axis, i.e., one replaces t
by i τ , then this relative minus sign is gone. Thus SE [Φ] is the action of the
system for Euclidean time – the Euclidean action.

Also the measure in (1.71) can be written in simpler form as

D[Φ] =
∏

(n,n4)∈Λ

dΦ(n, n4) , (1.75)

and the expression for the partition function turns into

Zε
T = CN3NT

∫
D[Φ] e−SE [Φ] . (1.76)

1.3.6 Including operators in the path integral

We may evaluate the right-hand side of (1.2) analogously to the method used
for the partition function ZT . In particular, we again use the Trotter formula
to write the numerator of the Euclidean correlator as

tr
[
e−(T−t)Ĥ Ô2 e−tĤ Ô1

]
= lim

NT →∞
tr

[
Ŵ NT −nt

ε Ô2 Ŵ nt
ε Ô1

]
, (1.77)

where the number of steps NT and nt are related to T and t by T = εNT

and t = εnt. Similar to the approximation Zε
T we also introduce a Euclidean

correlator with a finite temporal resolution ε. It reads

〈O2(t)O1(0)〉εT =
1

Zε
T

tr
[
Ŵ NT −nt

ε Ô2 Ŵ nt
ε Ô1

]
(1.78)

=
1

Zε
T

∫
DΦ0 . . . DΦNT −1DΦ̃0DΦ̃nt 〈Φ0|Ŵε|ΦNT −1〉〈ΦNT −1|Ŵε|ΦNT −2〉 . . .

〈Φnt+1|Ŵε|Φ̃nt〉〈Φ̃nt |Ô2|Φnt〉〈Φnt |Ŵε|Φnt−1〉 . . . 〈Φ1|Ŵε|Φ̃0〉〈Φ̃0|Ô1|Φ0〉 .
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This structure differs from the equivalent expression (1.71) for the normaliza-
tion constant Zε

T only by the two insertions of the matrix elements

〈Φ̃0|Ô1|Φ0〉 and 〈Φ̃nt |Ô2|Φnt〉 . (1.79)

The operators Ô1 and Ô2 are expressions built from field operators and their
conjugate momenta. Two typical examples are

ÔA = Φ̂(n0)† , ÔB =
∑

n∈Λ3

Φ̂(n) e−i a n p , (1.80)

where the first operator ÔA creates from the vacuum a field quantum at
some position n0, and the operator ÔB annihilates a quantum projected to
momentum p. All operators Ô1 and Ô2 that can appear in (1.78) can be
written as expressions of field operators and conjugate momenta (1.55). Thus,
we obtain for matrix elements (1.79) of combinations of field operators

〈Φ̃|Ô|Φ〉 = O[Φ] δ
(
Φ̃− Φ

)
, (1.81)

where we have made use of (1.57) and (1.58). The object O[Φ] is no longer an
operator but a functional of the classical field variables Φ. A functional maps
a field configuration Φ, specified by the set of all field values Φ(n),n ∈ Λ3,
into the complex numbers. For the two operators ÔA and ÔB in the example
of (1.80) above, these functionals read (∗ denotes complex conjugation)

OA[Φ] = Φ(n0)∗ , OB [Φ] =
∑

n∈Λ3

Φ(n) e−i a n p . (1.82)

Inserting the expression (1.81) for the matrix elements of the operators into
(1.78) and integrating out the fields Φ̃0 and Φ̃nt we find

〈O2(t)O1(0)〉εT =
CN3NT

Zε
T

∫
D[Φ] e−SE [Φ] O2[Φ(. , nt)]O1[Φ(. , 0)] . (1.83)

In the last step we have collected and combined the different terms, just as
we did for the partition function. In particular, we obtain the same expres-
sion for the action SE as given in (1.74) and use again the measure D[Φ] as
defined in (1.75). The functionals O1[Φ(. , 0)] and O2[Φ(. , nt)] are the lattice
transcriptions of the original operators Ô1 and Ô2 acting in Hilbert space. The
functional O1[Φ(. , 0)] is evaluated for the fields Φ(. , 0) with time argument 0,
while the functional O2[Φ(. , nt)] is evaluated for the fields Φ(. , nt) with time
argument nt, connected to the Euclidean time t via t = εnt. The spatial ar-
guments of the fields, used for evaluating the functionals, were replaced by a
dot, since the functionals map the whole field configuration, defined by the set
of all field values at the given time, into the complex numbers. We stress that
the functionals O1[Φ(. , 0)] and O2[Φ(. , nt)] as well as the Boltzmann factor
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exp (−SE [Φ]) are numbers, not operators, and therefore their relative order is
no longer crucial. Let us finally remark that the factor CN3NT in (1.83) is
the same factor that also shows up in the expression (1.76) for the partition
function. The two factors in the denominator and the numerator cancel and
we can omit them from now on.

1.4 Quantization with the path integral

In the last section we completed the derivation of the path integral repre-
sentation of the Euclidean correlators 〈O2(t)O1(0)〉εT . In this section we now
discuss several aspects of the equations we have derived and present some gen-
eral concepts and strategies of lattice field theory. In particular, we present the
idea of directly using the path integral as a method for quantizing a system.
For further reading on this subject we recommend [7, 10, 11].

1.4.1 Different discretizations of the Euclidean action

Let us begin our discussion of the path integral with a closer look at the
expression (1.74) for the Euclidean action. When inspecting the derivative
terms – the first two terms on the right-hand side of (1.74) – one notes a dif-
ference between the two discretizations of the derivatives. The discretization
for the temporal derivative uses forward differences, whereas for the spatial
derivatives central differences are used. While the discretization of the spa-
tial derivative was chosen in (1.50), the temporal derivative is a result of
the stepwise transport in Euclidean time with the Trotter formula. Thus it
contains only nearest neighbors. Such a discretization has, however, larger dis-
cretization errors than using central differences. From the Taylor expansion
f(x± ε) = f(x)± εf ′(x) + ε2f ′′(x)/2± ε3f ′′′(x)/6 + . . . one finds that for the
forward differences

f(x + ε) − f(x)
ε

= f ′(x) + O(ε) , (1.84)

while for the discretization with central differences

f(x + ε) − f(x − ε)
2 ε

= f ′(x) + O(ε2) . (1.85)

Due to the smaller discretization errors it is more advantageous to use the
central difference formula also for the temporal derivative.

A second change that is usually implemented is to use the same temporal
and spatial lattice constant, and to set

ε = a . (1.86)

Although ε and a have a different origin, both of them should be small: The
spatial lattice constant determines down to which length scale we can resolve
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the system, while the temporal constant determines how well the Trotter
formula approximates the Euclidean time transporter. When using the central
differences for time and implementing (1.86), the Euclidean action reads

SE [Φ] = a4
∑

n∈Λ

(
1
2

4∑

µ=1

(
Φ(n+µ̂) − Φ(n−µ̂)

2a

)2

+
m2

2
Φ(n)2 + V (Φ(n))

)
.

(1.87)
It is obvious that in this form the action treats the spatial directions and
Euclidean time equally. Up to the fact that for Euclidean space we have no
relative sign between temporal and spatial components of the metric tensor,
the equal footing of space and time in (1.87) is the same as in the action
(1.41) and (1.42) with the Minkowski metric. The metric tensor which is used
in (1.42) to transform between covariant and contravariant indices is replaced
by a Kronecker delta.

We finally remark that in Minkowski space the components run from µ = 0
to 3, where µ = 0 refers to time. To stress that Euclidean metric is used the
index µ in (1.87) runs from 1 to 4, and µ = 4 refers to Euclidean time.

1.4.2 The path integral as a quantization prescription

The action with central differences for time is not derived from first principles
in the way presented above. The changes we performed in the action signals
that we now change the philosophy for the quantization of the system. Let us
discuss this new quantization prescription.

In the derivation of the last section the quantization of the system entered
by enforcing the canonical commutation rules (1.52) and (1.53) for the fields
and their conjugate momenta. Subsequently, the expression

〈O2(t)O1(0)〉T =
1

ZT

∫
D[Φ] e−SE [Φ] O2[Φ(. , nt)]O1[Φ(. , 0)] , (1.88)

for the Euclidean correlators as path integrals was derived (from now on we
drop the superscripts ε that indicate the discretization of time). Also the
partition function is given as a path integral

ZT =
∫

D[Φ] e−SE [Φ] . (1.89)

The measure
D[Φ] =

∏

n∈Λ

dΦ(n) , (1.90)

is a product measure of integration measures for the classical field variables
at all points n of the 4D lattice Λ.

Our new quantization prescription, which we introduce now, is based di-
rectly on Eqs. (1.88), (1.89), and (1.90). It states that the quantization is no
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longer implemented by enforcing canonical commutation rules for the commu-
tators, but instead by a path integral over classical field variables. The steps
involved in the quantization of a system are

• Step 1: The continuous space-time is replaced by a 4D Euclidean lattice
with lattice constant a. The degrees of freedom are classical field variables
Φ living on the lattice.

• Step 2: The Euclidean action SE [Φ] of the system is discretized on the
lattice such that in the limit a → 0 the Euclidean continuum action is
obtained. The Boltzmann weight factor is exp (−SE [Φ]).

• Step 3: The operators that appear in the Euclidean correlator one wants
to study are translated to functionals by replacing the field operators with
the classical lattice field variables.

• Step 4: Euclidean correlation functions are computed by evaluating these
functionals on some lattice field configuration, weighting them with the
Boltzmann factor and integrating over all possible field configurations.

In the next chapters we will implement this prescription for QCD. In this
approach there are, however, several different possibilities from which one
can choose. We have already seen that various discretizations of derivatives
can be used which differ in their discretization errors. An important question
is whether different discretizations of a system all lead to a theory where
the corresponding Euclidean correlators 〈O2(t)O1(0)〉T can be interpreted
according to our first key equation

lim
T→∞

〈O2(t)O1(0)〉T =
∑

n

〈0|Ô2|n〉〈n|Ô1|0〉 e−t En , (1.91)

such that energy levels and physical matrix elements can be extracted. In
other words: Does a given lattice discretization of the Euclidean action used
in a path integral give rise to a proper quantum mechanical Hilbert space? If
yes, how can the n-point functions with Minkowski metric be reconstructed
from the Euclidean correlators? A very general answer to these questions is
given by the so-called Osterwalder–Schrader reconstruction (see, e.g., [12] for
a textbook presentation). If the Euclidean correlators calculated from the path
integral obey a certain set of axioms, then the Hilbert space for the Minkowski
theory can be obtained in a constructive way. For the Wilson formulation of
lattice QCD, which we will present in Chaps. 2 and 5, this construction was
generalized to lattice QCD in [13] (see also [14]). For an alternative con-
struction on the lattice, based on the transfer matrix, the interested reader is
referred to [15]. For our presentation here it is sufficient to conclude that we
have some freedom in the discretization of QCD, and when the axioms are
obeyed the physical Hilbert space can be constructed.

Once physical observables are calculated on the lattice one is interested
in their values in the limit a → 0, the so-called continuum limit. This limit
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can be understood in several ways. We have already encountered the so-called
naive or classical continuum limit when we required the lattice discretization
of the action to approach its continuum counterpart for a → 0. However, the
naive continuum limit for the action is only used as a guiding principle in
the construction of the lattice theory. The fully quantized theory requires the
evaluation of the path integral, giving rise to results for observables which are
involved functions of a. In actual numerical calculations the continuum limit
is approached in a different way: The couplings of the theory are driven to
their critical values, i.e., to the values where the system undergoes a phase
transition. When doing so, physical scales (e.g., the proton size) become large
in lattice units. In other words, the resolution of our lattice becomes finer and
finer. Certainly these few remarks are too short to understand this procedure
which we will discuss in great detail in Sect. 3.5. This true continuum limit is
based on concepts from statistical mechanics and we conclude this chapter by
discussing the relation of lattice field theory to statistical mechanics.

1.4.3 The relation to statistical mechanics

As announced, there is a structural equivalence between our field theory on the
lattice and statistical mechanics. A prototype system of statistical mechanics
is a spin system. The degrees of freedom are classical spin variables sn located
on some lattice which is typically 3D. The energy of the system is a functional
H[s] of the spins. In the canonical ensemble, i.e., for the system in a heat bath
with temperature T , the probability P [s] of finding the system in a particular
configuration s is given by

P [s] =
1
Z

e−β H[s] , (1.92)

where β is the inverse temperature β = 1/kBT , with kB denoting the Boltz-
mann constant. The partition function Z is given by

Z =
∑

{s}

e−β H[s] , (1.93)

where the sum runs over all possible spin configurations {s}. The expectation
value of some observable O is given by

〈O〉 =
1
Z

∑

{s}

e−β H[s] O[s] . (1.94)

The similarity between (1.88) and (1.94) is obvious. The Boltzmann factor
exp(−β H) is replaced by the weight factor exp(−SE) and the summation
over all spin configurations by the integral over configurations of the classical
field Φ. Thus, the name “partition function” for the normalization factor of
the path integral now appears natural. The structural equivalence between
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lattice field theory and statistical mechanics is an important observation also
from a technical point of view: It allows one to apply analytical and numerical
methods, originally developed in statistical mechanics, to lattice field theory.
Some of these techniques will be discussed in subsequent chapters.
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2

QCD on the lattice – a first look

In Chap. 1 we derived the lattice path integral for a scalar field theory using
the canonical approach for the quantization of the system. Subsequently, we
changed our point of view and adopted the lattice path integral itself as a
method of quantization. The steps involved are a lattice discretization of the
classical Euclidean action and the construction of the measure for the integra-
tion over “all configurations” of the classical fields. In this chapter we begin
with the implementation of these two steps for quantum chromodynamics.

Quantum chromodynamics (QCD) is the theory of strongly interacting
particles and fields, i.e., the theory of quarks and gluons. In the first section
of this chapter we will review the QCD action functional and its symmetries.
This serves as a preparation for the subsequent discretization of QCD on the
lattice. The discretization proceeds in several steps. We begin with the naive
discretization of the fermionic part of the QCD action followed by discussing
the lattice action for the gluons. In the end we write down a complete ex-
pression for the QCD lattice path integral. Already at this point we stress,
however, that the expression for the path integral obtained in this chapter is
not the final word. The nature of the quark fields in our path integral will
have to be changed in order to incorporate Fermi statistics. This step will
be taken in Chap. 5 where we reinterpret the quark fields as anti-commuting
numbers, so-called Grassmann numbers.

2.1 The QCD action in the continuum

We begin our construction of the QCD lattice path integral with a review of
the Euclidean continuum action. After introducing the quark and gluon fields,
we develop the QCD continuum action starting with the discussion of the
fermionic part of the action and its invariance under gauge transformations.
Subsequently, we construct an action for the gluon fields that are invariant
under these transformations.

Gattringer, C., Lang, C.B.: QCD on the Lattice – A First Look. Lect. Notes
Phys. 788, 25–41 (2010)
DOI 10.1007/978-3-642-01850-3 2 c© Springer-Verlag Berlin Heidelberg 2010
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2.1.1 Quark and gluon fields

The quarks are massive fermions and as such are described by Dirac 4-spinors

ψ(f)(x)α
c

, ψ
(f)

(x)α
c

. (2.1)

These quark fields carry several indices and arguments. The space–time posi-
tion is denoted by x, the Dirac index by α = 1, 2, 3, 4, and the color index by
c = 1, 2, 3. In general we will use Greek letters for Dirac indices and letters
a, b, c, . . . for color. Each field ψ(f)(x) thus has 12 independent components.
In addition the quarks come in several flavors called up, down, strange, charm,
bottom, and top, which we indicate by a flavor index f = 1, 2, . . . , 6. In many
calculations it is sufficient to include only the lightest two or three flavors of
quarks. Thus, our flavor index will run from 1 to Nf , the number of flavors.
We remark that often we omit the indices and use matrix/vector notation
instead.

In the Minkowskian operator approach the fields ψ and ψ are related by
ψ = ψ†γ0, where γ0 is the γ-matrix related to time. In the Euclidean path
integral one uses independent integration variables ψ and ψ.

In addition to the quarks, QCD contains gauge fields describing the
gluons,

Aµ(x)cd . (2.2)

These fields also carry several indices. As for the quark fields we have a space–
time argument denoted by x. In addition, the gauge fields constitute a vector
field carrying a Lorentz index µ which labels the direction of the different
components in space–time. Since we are interested in the Euclidean action,
the Lorentz index µ is Euclidean, i.e., we do not distinguish between co-
variant and contravariant indices. There is no metric tensor involved and
µ = 1, 2, 3, 4 simply label the different components. Finally, the gluon field
carries color indices c, d = 1, 2, 3. For given x and µ, the field Aµ(x) is a
traceless, hermitian 3 × 3 matrix at each space–time point x. We will discuss
the structure of these matrices and their physical motivation in more detail
below.

It is convenient to split the QCD action into a fermionic part, which
includes quark fields and an interaction term coupling them to the gluons,
and a gluonic part, which describes propagation and interaction of only the
gluons.

2.1.2 The fermionic part of the QCD action

The fermionic part SF [ψ,ψ,A] of the QCD action is a bilinear functional in
the fields ψ and ψ. It is given by
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SF [ψ,ψ,A] =
Nf∑

f=1

∫
d4x ψ

(f)
(x)

(
γµ (∂µ + iAµ(x)) + m(f)

)
ψ(f)(x)

=
Nf∑

f=1

∫
d4x ψ

(f)
(x)α

c

(
(γµ)αβ (δcd∂µ + iAµ(x)cd)

+ m(f)δαβδcd

)
ψ(f)(x)β

d
.

(2.3)

In the first line of this equation we have used matrix/vector notation for the
color and Dirac indices, while in the second line we write all indices explicitly.
Note that we use the Einstein summation convention.

Equation (2.3) makes it obvious that the action is a sum of the actions
for the individual flavors f = 1, 2, . . . , Nf . The quarks with different flavor
all couple in exactly the same way to the gluon field Aµ and only differ in
their masses m(f). Of course, different flavors also have different electric charge
and thus couple differently to the electromagnetic field. However, here we only
discuss the strong interaction.

The color indices c and d of the quark fields ψ, ψ are summed over with the
corresponding indices of the gauge field and, in this way, couple the quarks to
the gluons. The coupling of the gauge field is different for each component µ
since each component is multiplied with a different matrix γµ. The γ-matrices
are 4×4 matrices in Dirac space, and in the QCD action they mix the different
Dirac components of the quark fields. They are the Euclidean versions of
the (Minkowski) γ-matrices familiar from the Dirac equation. The Euclidean
γ- matrices γµ, µ = 1, 2, 3, 4, obey the Euclidean anti-commutation relations

{γµ, γν} = 2 δµν 1 . (2.4)

In Appendix A.2 we discuss how to construct the Euclidean γ-matrices from
their Minkowski counterparts and give an explicit representation. The different
partial derivatives in the kinetic term of (2.3) mix the Dirac components in
the same way as the gauge fields, i.e., the ∂µ are also contracted with the
matrices γµ. The kinetic term is, however, trivial in color space. The mass
term, finally, is trivial in both color and Dirac space.

Having discussed our notation in detail, we still should verify that the
action (2.3) indeed gives rise to the relativistic wave equation for fermions, the
Dirac equation. For a single flavor, the contribution to the action is given by
(we drop the flavor index for the subsequent discussion and use matrix/vector
notation for the color and Dirac indices)

SF [ψ,ψ,A] =
∫

d4x ψ(x) (γµ (∂µ + iAµ(x)) + m)ψ(x) . (2.5)

The simplest way of applying the Euler Lagrange equations (1.43) in (2.5) is
to differentiate the integrand of (2.5) with respect to ψ(x). This gives rise to
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(γµ (∂µ + iAµ(x)) + m)ψ(x) = 0 , (2.6)

which is indeed the (Euclidean) Dirac equation in an external field Aµ. Thus,
we have verified that the action (2.5) has the correct form.

2.1.3 Gauge invariance of the fermion action

So far we have only discussed the different building blocks of QCD and how
they are assembled in the fermionic part of the QCD action. Let us now dive
a little bit deeper into the underlying structures and symmetries.

Up to the additional color structure, the action (2.5) is exactly the action
of electrodynamics – when using matrix/vector notation this difference is not
even explicit. As a matter of fact, the QCD action is obtained by generalizing
the gauge invariance of electrodynamics.

In electrodynamics the action is invariant under multiplication of the
fermion fields with an arbitrary phase at each space–time point x, combined
with a transformation of the gauge field. In QCD we require invariance un-
der local rotations among the color indices of the quarks. At each space-time
point x we choose an independent complex 3 × 3 matrix Ω(x). The matrices
are required to be unitary, Ω(x)† = Ω(x)−1, and to have det[Ω(x)] = 1. Such
matrices are the defining representation of the special unitary group, denoted
by SU(3) for the case of 3× 3 matrices. It is easy to see that this set is closed
under matrix multiplication. Furthermore the unit matrix is contained in this
set and for every element there exists an inverse (the hermitian conjugate
matrix). Thus the set of SU(3) matrices forms a group. We collect the basic
equations showing these statements in Appendix A.1. Note, however, that the
group operation – the matrix multiplication – is not commutative. Groups
with a non-commutative group operation are called non-abelian groups. The
idea of using non-abelian groups for a gauge theory was pursued by Yang and
Mills [1], and such theories are often referred to as Yang–Mills theories.

Returning to our discussion of the QCD gauge invariance, we require that
the action is invariant under the transformation

ψ(x) → ψ′(x) = Ω(x)ψ(x) , ψ(x) → ψ′(x) = ψ(x)Ω(x)† (2.7)

for the fermion fields and a yet unspecified transformation Aµ(x) → A′
µ(x)

for the gauge fields. Invariance of the action means that we require

SF [ψ′, ψ′, A′] = SF [ψ,ψ,A] . (2.8)

With (2.5) and (2.7), this gives

SF [ψ′, ψ′, A′] =
∫

d4xψ(x)Ω(x)†
(
γµ

(
∂µ + iA′

µ(x)
)

+ m
)
Ω(x)ψ(x) .

(2.9)
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Using Ω(x)† = Ω(x)−1, we see immediately that for the mass term the gauge
transformation matrices cancel. For the other terms the situation is a bit more
involved. From comparing (2.5) with (2.9) we obtain the condition

∂µ + iAµ(x) = Ω(x)†
(
∂µ + iA′

µ(x)
)
Ω(x)

= ∂µ + Ω(x)† (∂µΩ(x)) + iΩ(x)†A′
µ(x)Ω(x) .

(2.10)

This is an equation for an operator acting on a function of x. Thus, due to
the product rule, we find two terms with derivatives. We now can solve for
A′

µ(x) (again we use Ω(x)† = Ω(x)−1) and we arrive at the transformation
property for the gauge field

Aµ(x) → A′
µ(x) = Ω(x)Aµ(x)Ω(x)† + i (∂µΩ(x))Ω(x)† . (2.11)

Note that also A′
µ(x) is hermitian and traceless as required for the gauge

fields. For the first term on the right-hand side of (2.11), this follows from the
fact that Aµ(x) is traceless and Ω(x)† = Ω(x)−1. For the second term this is
shown in Appendix A.1 (see (A.11) and (A.15)).

The requirement that the fermion action (2.5) remains invariant under the
gauge transformation (2.7) of the fermions necessarily implies the presence of
gauge fields Aµ(x) with the transformation properties given by (2.11).

In the next section, when we discretize QCD on the lattice, we again require
the invariance of the lattice action under the local gauge transformations
(2.7) for the quark fields. Gauge fields have to be introduced to achieve gauge
invariance of the action.

2.1.4 The gluon action

Let us now discuss the action for the gluon fields Aµ(x). The gluon action
SG[Aµ] is a functional of only the gauge fields and is required to be invariant
under the transformation (2.11):

SG[A′] = SG[A] . (2.12)

To construct an action with this property we define the covariant derivative

Dµ(x) = ∂µ + iAµ(x) . (2.13)

From our intermediate result in the first line of (2.10) we read off the trans-
formation property for the covariant derivative as

Dµ(x) → D′
µ(x) = ∂µ + iA′

µ(x) = Ω(x)Dµ(x)Ω(x)† . (2.14)

These transformation properties ensure that Dµ(x)ψ(x) and ψ(x) transform
in exactly the same way – thus, the name “covariant derivative.”

The covariant derivatives are now used to construct an action functional
which is a generalization of the expression known from electrodynamics. We
define the field strength tensor Fµν(x) as the commutator
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Fµν(x) = −i[Dµ(x), Dν(x)] = ∂µAν(x) − ∂νAµ(x) + i[Aµ(x), Aν(x)] , (2.15)

where the last term on the right-hand side does not vanish since Aµ(x) and
Aν(x) are matrices, i.e., objects where multiplication is a non-commutative
operation. Up to this commutator, the field strength tensor Fµν(x) has the
same form as the field strength in electrodynamics.

The fact that the field strength tensor is the commutator of two covariant
derivatives implies that it inherits the transformation properties (2.14), i.e.,
it transforms as

Fµν(x) → F ′
µν(x) = Ω(x)Fµν(x)Ω(x)† . (2.16)

As a candidate for the gauge action we now consider the expression

SG[A] =
1

2 g2

∫
d4x tr [Fµν(x)Fµν(x)] . (2.17)

Taking the trace over the color indices ensures that (2.17) is invariant under
gauge transformations. One can use (2.16), the invariance of the trace under
cyclic permutations, and Ω(x)† = Ω(x)−1 to verify this property. Further-
more, the summation over the Lorentz indices µ, ν (summation convention)
ensures that the action is a Lorentz scalar. We stress again that (2.17) is
understood in Euclidean space.

From (2.15) and (2.17) it is obvious that our gauge action generalizes the
action of electrodynamics. Up to the trace and the different overall factor, it
exactly matches the action for the electromagnetic field. The trace is due to
the fact that gluon fields are matrix valued. Below, we decompose the matrix-
valued fields into components and in this way get rid of the trace, pushing
the similarity to electrodynamics even further. The extra factor 1/g2 is just a
convenient way to introduce the coupling. After rescaling the gauge fields

1
g
Aµ(x) → Aµ(x) , (2.18)

the factor 1/g2 in (2.17) is gone and the gauge action assumes the more
familiar form. Now, the gauge coupling shows up in the covariant derivative

Dµ(x) → ∂µ + i gAµ(x) , (2.19)

making obvious that g is the coupling strength of the gauge fields to the
quarks. On the lattice it is more convenient to have the gauge coupling as an
overall factor of the gauge action, i.e., we work with the form (2.17).

2.1.5 Color components of the gauge field

We have introduced the gauge fields Aµ(x) as hermitian, traceless matrices and
have shown that the gauge transformation (2.11) preserves these properties.
Thus the Aµ(x) are in the Lie algebra su(3) and we can write
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Aµ(x) =
8∑

i=1

A(i)
µ (x)Ti . (2.20)

The components A(i)
µ (x), i = 1, 2, . . . 8, are real-valued fields, the so-called

color components, and the Ti are a basis for traceless hermitian 3×3 matrices
(see Appendix A.1). We can use this representation (2.20) of the gauge field to
write also the field strength tensor (2.15) in terms of its components. Inserting
(2.20) into (2.15) we obtain

Fµν(x) =
8∑

i=1

(
∂µA(i)

ν (x) − ∂νA(i)
µ (x)

)
Ti + i

8∑

j,k=1

A(j)
µ (x)A(k)

ν (x) [Tj , Tk] .

(2.21)
The commutator on the right-hand side can be simplified further with the
commutation relations (A.4) and one ends up with

Fµν(x) =
8∑

i=1

F (i)
µν (x)Ti , (2.22)

F (i)
µν (x) = ∂µA(i)

ν (x) − ∂νA(i)
µ (x) − fijkA(j)

µ (x)A(k)
ν (x) . (2.23)

This representation of the field strength can now be inserted in the expression
(2.17) for the gauge action and, using (A.3) to evaluate the trace, we obtain

SG[A] =
1

4 g2

8∑

i=1

∫
d4x F (i)

µν (x)F (i)
µν (x) . (2.24)

From this equation we see that the gauge action is a sum over color compo-
nents and each term has the form of the action of electrodynamics. However,
there appears a qualitatively new feature: From the right-hand side of (2.23)
we see that the field strength color components are not linear in the gauge
field A(i)

µ (x) but have a quadratic piece which mixes the different color compo-
nents of the gluon field. Thus, in the action (2.24) we not only encounter the
term quadratic in the gauge fields which is familiar from electrodynamics, but
also find cubic and quartic terms. These terms give rise to self-interactions of
the gluons, making QCD a highly nontrivial theory. The self-interactions are
responsible for confinement of color, the most prominent feature of QCD.

In Fig. 2.1 we show a schematic picture (a so-called tree-level Feynman
diagram) illustrating the cubic and quartic interaction terms. The curly lines
represent the gluons and the dots are the interaction vertices.

These remarks conclude our review of the continuum action and we have
all the concepts and notations necessary to begin the lattice discretization of
quantum chromodynamics. We stress, however, that besides gauge invariance,
there are other important symmetries of the QCD action. We discuss these
symmetries later as we need them.
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Fig. 2.1. Schematic picture of the cubic and quartic gluon self-interaction. The
wavy lines represent the gluon propagators and the dots are the interaction vertices

2.2 Naive discretization of fermions

In this section we introduce the so-called naive discretization of the fermion
action. Later, in Chap. 5, this discretization will be augmented with an ad-
ditional term to remove lattice artifacts. Here, it serves to present the basic
idea and, more importantly, to discuss the representation of the lattice gluon
field which differs from the continuum form. We show that on the lattice the
gluon fields must be introduced as elements of the gauge group and not as
elements of the algebra, as is done in the continuum formulation.

2.2.1 Discretization of free fermions

As discussed in Sect. 1.4, the first step in the lattice formulation is the intro-
duction of the 4D lattice Λ:

Λ = {n = (n1, n2, n3, n4) |
n1, n2, n3 = 0, 1, . . . , N − 1 ; n4 = 0, 1, . . . , NT − 1} . (2.25)

The vectors n ∈ Λ label points in space–time separated by a lattice constant a.
In our lattice discretization of QCD we now place spinors at the lattice points
only, i.e., our fermionic degrees of freedom are

ψ(n) , ψ(n) , n ∈ Λ , (2.26)

where the spinors carry the same color, Dirac, and flavor indices as in the
continuum (we suppress them in our notation). Note that for notational con-
venience we only use the integer-valued 4-coordinate n to label the lattice
position of the quarks and not the actual physical space-time point x = an.

In the continuum the action S0
F for a free fermion is given by the expression

(set Aµ = 0 in (2.5))

S0
F [ψ,ψ] =

∫
d4xψ(x) (γµ∂µ + m)ψ(x) . (2.27)



2.2 Naive discretization of fermions 33

When formulating this action on the lattice we have to discretize the integral
over space–time as well as the partial derivative. The discretization is imple-
mented as a sum over Λ, as we did for the scalar field theory in Chap. 1. The
partial derivative is discretized with the symmetric expression

∂µψ(x) → 1
2a

(ψ(n + µ̂) − ψ(n − µ̂)) . (2.28)

Thus, our lattice version of the free fermion action reads

S0
F [ψ,ψ] = a4

∑

n∈Λ

ψ(n)

(
4∑

µ=1

γµ
ψ(n + µ̂) − ψ(n − µ̂)

2a
+ mψ(n)

)
. (2.29)

This form is the starting point for the introduction of the gauge fields.

2.2.2 Introduction of the gauge fields as link variables

In the last section we showed that requiring the invariance of the action un-
der the local rotation (2.7) of the color indices of the quark fields enforces
the introduction of the gauge fields. On the lattice we implement the same
transformation by choosing an element Ω(n) of SU(3) for each lattice site n
and transforming the fermion fields according to

ψ(n) → ψ′(n) = Ω(n)ψ(n) , ψ(n) → ψ′(n) = ψ(n)Ω(n)† . (2.30)

As for the continuum case, we find that on the lattice the mass term of (2.29)
is invariant under the transformation (2.30). For the discretized derivative
terms in (2.29), this is not the case. Consider, e.g., the term

ψ(n)ψ(n + µ̂) → ψ′(n)ψ′(n + µ̂) = ψ(n)Ω(n)† Ω(n + µ̂)ψ(n + µ̂) . (2.31)

This is not gauge-invariant. If, however, we introduce a field Uµ(n) with a
directional index µ, then

ψ′(n)U ′
µ(n)ψ′(n + µ̂) = ψ(n)Ω(n)† U ′

µ(n)Ω(n + µ̂)ψ(n + µ̂) (2.32)

is gauge-invariant if we define the gauge transformation of the new field by

Uµ(n) → U ′
µ(n) = Ω(n)Uµ(n)Ω(n + µ̂)† . (2.33)

In order to make the fermionic action (2.29) gauge-invariant, we introduce the
gauge fields Uµ(n) as elements of the gauge group SU(3) which transform as
given in (2.33). These matrix-valued variables are oriented and are attached
to the links of the lattice and thus are often referred to as link variables. Uµ(n)
lives on the link which connects the sites n and n + µ̂.

Since the link variables are oriented, we can also define link variables that
point in negative µ direction. Note that these are not independent link vari-
ables but are introduced only for notational convenience. In particular, U−µ(n)
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U− µ(n) ≡ Uµ(n− µ̂)†
n n+µ̂

Uµ(n)
nn− µ̂

Fig. 2.2. The link variables Uµ(n) and U−µ(n)

points from n to n − µ̂ and is related to the positively oriented link variable
Uµ(n − µ̂) via the definition

U−µ(n) ≡ Uµ(n − µ̂)† . (2.34)

In Fig. 2.2 we illustrate the geometrical setting of the link variables on the
lattice. From the definitions (2.34) and (2.33) we obtain the transformation
properties of the link in negative direction

U−µ(n) → U ′
−µ(n) = Ω(n)U−µ(n)Ω(n − µ̂)† . (2.35)

Note that we have introduced the gluon fields Uµ(n) as elements of the gauge
group SU(3), not as elements of the Lie algebra which were used in the con-
tinuum. According to the gauge transformations (2.33) and (2.35) also the
transformed link variables are elements of the group SU(3).

Having introduced the link variables and their properties under gauge
transformations, we can now generalize the free fermion action (2.29) to the
so-called naive fermion action for fermions in an external gauge field U :

SF [ψ,ψ, U ] = a4
∑

n∈Λ

ψ(n)

(
4∑

µ=1

γµ
Uµ(n)ψ(n+µ̂) − U−µ(n)ψ(n−µ̂)

2a
+mψ(n)

)
.

(2.36)

Using (2.30), (2.33), and (2.35) for the gauge transformation properties of
fermions and link variables, one readily sees the gauge invariance of the
fermion action (2.36), SF [ψ,ψ, U ] = SF [ψ′, ψ′, U ′].

2.2.3 Relating the link variables to the continuum gauge fields

Let us now discuss the link variables in more detail and see how they can be
related to the algebra-valued gauge fields of the continuum formulation. We
have introduced Uµ(n) as the link variable connecting the points n and n+ µ̂.
The gauge transformation properties (2.33) are consequently governed by the
two transformation matrices Ω(n) and Ω(n + µ̂)†. Also in the continuum an
object with such transformation properties is known: It is the path-ordered
exponential integral of the gauge field Aµ along some curve Cxy connecting
two points x and y, the so-called gauge transporter:
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G(x, y) = P exp

(
i
∫

Cxy

A · ds

)
. (2.37)

We may assume that a lattice is embedded in the continuum, where smooth
gauge fields live. For a detailed discussion of the path-ordered exponential
in the continuum see, e.g., [2]. We do not need the precise definition of the
continuum gauge transporters and only use that under a gauge transformation
(2.11) they transform as

G(x, y) → Ω(x)G(x, y)Ω(y)† . (2.38)

These transformation properties are the same as for our link variables Uµ(n)
when n and n + µ̂ are considered as end points of a path. Based on these
transformation properties, we interpret the link variable Uµ(n) as a lattice
version of the gauge transporter connecting the points n and n + µ̂, i.e., we
wish to establish Uµ(n) = G(n, n + µ̂) +O(a). For that purpose we introduce
algebra-valued lattice gauge fields Aµ(n) and write

Uµ(n) = exp (i aAµ(n)) . (2.39)

When comparing (2.37) and (2.39) one sees that we have approximated the
integral along the path from n to n + µ̂ by aAµ(n), i.e., by the length a
of the path times the value of the field Aµ(n) at the starting point.1 This
approximation is good to O(a) and no path ordering is necessary to that
order. Since the link variables act as gauge transporters, we will often use this
nomenclature instead of “link variable.”

Based on the relation (2.39) we can now also connect the lattice fermion
action (2.36) to its continuum counterpart (2.5). Since one of the guiding
principles of our construction is the requirement that in the limit a → 0 the
lattice action approaches the continuum form, we expand (2.39) for small a,

Uµ(n) = 1+i aAµ(n)+O(a2) , U−µ(n) = 1− i aAµ(n− µ̂)+O(a2) , (2.40)

where we use (2.34) and Aµ = A†
µ for the expansion of U−µ(n). Inserting these

expanded link variables into expression (2.36) we find

SF [ψ,ψ, U ] = S0
F [ψ,ψ] + SI

F [ψ,ψ,A] , (2.41)

where S0
F denotes the free part of the action and the interaction part reads

SI
F [ψ,ψ,A] = i a4

∑

n∈Ω

4∑

µ=1

ψ(n)γµ
1
2

(Aµ(n)ψ(n + µ̂) + Aµ(n − µ̂)ψ(n − µ̂))

= i a4
∑

n∈Ω

4∑

µ=1

ψ(n)γµAµ(n)ψ(n) + O(a) . (2.42)

1We remind the reader that for notational convenience we denote the lattice
points only by their integer-valued 4-coordinates n. For the current discussion it
should, however, be kept in mind that the physical space–time coordinates are a n,
i.e., neighboring lattice points are separated by the distance a.
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In the second step we have used ψ(n ± µ̂) = ψ(n) + O(a) and Aµ(n − µ̂) =
Aµ(n) +O(a). The two Eqs. (2.41) and (2.42) establish that when expanding
the lattice version (2.36) of the fermionic action for a → 0, we indeed recover
the continuum form (2.5).

Before we continue with discretizing the gauge part of the QCD action we
stress an important conceptual point: The group-valued link variables Uµ(n)
are not merely an auxiliary construction to sneak the Lie algebra-valued fields
Aµ(x) of the continuum into the lattice formulation. Instead, the group ele-
ments Uµ(n) are considered as the fundamental variables which are integrated
over in the path integral (see Chap. 3). This change from algebra-valued to
(compact) group-valued fields has important consequences. In particular, the
role of gauge fixing changes considerably. We will discuss these issues in detail
once we have completed the construction of QCD on the lattice.

2.3 The Wilson gauge action

We have introduced the link variables as the basic quantities for putting the
gluon field on the lattice. Now we construct a lattice gauge action in terms of
the link variables and show that in the limit a → 0 it approaches its continuum
counterpart (assuming that the lattice gauge fields are embedded in a contin-
uous background). This is the naive continuum limit in contradistinction to
the continuum limit of the full, integrated quantum theory.

2.3.1 Gauge-invariant objects built with link variables

As a preparation for the construction of the gluon action let us first discuss
the transformation properties of a string of link variables along a path of links.
Let P be such a path of k links on the lattice connecting the points n0 and n1.
We define the ordered product

P [U ] = Uµ0(n0)Uµ1(n0 + µ̂0) . . . Uµk−1(n1 − µ̂k−1) ≡
∏

(n,µ)∈P

Uµ(n) . (2.43)

This object is the lattice version of the continuum gauge transporter (2.37).
Note that the path P may contain link variables for both directions ±µ.

From the transformation properties for single link variables, (2.33) and
(2.35), it follows that gauge rotations for all but the end points cancel: Con-
sider the transformation of two subsequent link variables on the path, one
ending at n the other one starting from this point. The two transformation
matrices Ω(n)† and Ω(n) cancel each other at n. Only the matrices at the two
end points of the path, n0 and n1, remain. Thus the product P [U ] transforms
according to

P [U ] → P [U ′] = Ω(n0)P [U ]Ω(n1)† . (2.44)
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Like for the single link term, from such a product of link variables P [U ] a
gauge-invariant quantity can be constructed by attaching quark fields at the
starting point and at the end point,

ψ(n0)P [U ]ψ(n1) . (2.45)

An alternative way of constructing a gauge-invariant product of link vari-
ables is to choose for the path P and a closed loop L and to take the trace,

L[U ] = tr




∏

(n,µ)∈L

Uµ(n)



 . (2.46)

According to (2.44), under a gauge transformation only the matrices Ω(n0)
and Ω(n0)† at the point n0 where the loop is rooted remain. These matrices
then cancel when taking the trace. We find

L[U ′] = tr



Ω(n0)
∏

(n,µ)∈L

Uµ(n)Ω(n0)†


 = tr




∏

(n,µ)∈L

Uµ(n)



 = L[U ] .

(2.47)

Thus, we have established that the trace over a closed loop of link variables
is a gauge-invariant object. Such loops of link variables are used for the con-
struction of the gluon action and later will also serve as physical observables.

2.3.2 The gauge action

For the gluon action it is sufficient to use the shortest, nontrivial closed loop on
the lattice, the so-called plaquette. The plaquette variable Uµν(n) is a product
of only four link variables defined as

Uµν(n) = Uµ(n)Uν(n + µ̂)U−µ(n + µ̂ + ν̂)U−ν(n + ν̂)

= Uµ(n)Uν(n + µ̂)Uµ(n + ν̂)† Uν(n)† .
(2.48)

In the second formulation we have utilized the equivalence (2.34). We depict
the plaquette in Fig. 2.3. As we have shown in the last paragraph, the trace
of the plaquette variable is a gauge-invariant object.

We now present Wilson’s form of the gauge action [3] – the first formulation
of lattice gauge theory – and subsequently show that it indeed approaches the
continuum form in the naive limit a → 0. The Wilson gauge action is a sum
over all plaquettes, with each plaquette counted with only one orientation.
This sum can be realized by a sum over all lattice points n where the plaquettes
are located, combined with a sum over the Lorentz indices 1 ≤ µ < ν ≤ 4,
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Fig. 2.3. The four link variables which build up the plaquette Uµν(n). The circle
indicates the order that the links are run through in the plaquette

SG[U ] =
2
g2

∑

n∈Λ

∑

µ<ν

Re tr [1− Uµν(n)] . (2.49)

The individual contributions are the real parts of traces over the unit matrix
minus the plaquette variable. The factor 2/g2 is included to match the form
of the continuum action (2.17) in the limit a → 0. Let us now discuss this
limit.

For establishing the correct limit we need to expand the link variables in
the form (2.39) for small a. In order to handle the products of the four link
variables in the plaquette in an organized way, it is useful to invoke the Baker–
Campbell–Hausdorff formula for the product of exponentials of matrices:

exp(A) exp(B) = exp
(

A + B +
1
2
[A,B] + · · ·

)
, (2.50)

where A and B are arbitrary matrices and the dots indicate powers of the
matrices larger than 2 which are omitted. The formula (2.50) can be proven
easily by expanding both sides in powers of A and B. Inserting (2.39) into the
definition (2.48) of the plaquette and applying (2.50) iteratively, we obtain

Uµν(n) = exp
(

i aAµ(n) + i aAν(n + µ̂) − a2

2
[Aµ(n), Aν(n + µ̂)] (2.51)

−i aAµ(n + ν̂) − i aAν(n) − a2

2
[Aµ(n + ν̂), Aν(n)]

+
a2

2
[Aν(n + µ̂), Aµ(n + ν̂)] +

a2

2
[Aµ(n), Aν(n)]

+
a2

2
[Aµ(n), Aµ(n + ν̂)] +

a2

2
[Aν(n + µ̂), Aν(n)] + O(a3)

)
.

In this expression we have gauge fields with shifted arguments such as
Aν(n + µ̂). We now perform a Taylor expansion for these fields, i.e., we set

Aν(n + µ̂) = Aν(n) + a ∂µAν(n) + O(a2) , (2.52)

in all these terms and take into account contributions up to O(a2). With this
expansion several terms cancel and we obtain



2.4 Formal expression for the QCD lattice path integral 39

Uµν(n) = exp
(
i a2 (∂µAν(n) − ∂νAµ(n) + i[Aµ(n), Aν(n)]) + O(a3)

)

= exp
(
i a2Fµν(n) + O(a3)

)
. (2.53)

In the second step we use the continuum definition of the field strength given
in (2.15). The form (2.53) can now be inserted in (2.49) for the Wilson gauge
action. The exponential in (2.53) is expanded and we find

SG[U ] =
2
g2

∑

n∈Λ

∑

µ<ν

Re tr [1− Uµν(n)] =
a4

2 g2

∑

n∈Λ

∑

µ,ν

tr[Fµν(n)2] + O(a2) .

(2.54)

The terms of O(a2) that appear in the expansion of the exponential in
(2.53) cancel when taking the real part of tr[1 − Uµν(n)] (one may use
tr[Uµν(n)]∗ = tr[Uµν(n)†] = tr[Uνµ(n)] to see this). In a similar way also
the O(a3) terms in the expansion of (2.53) cancel, such that the Wilson ac-
tion approximates the continuum form up to O(a2), as stated in (2.54). Note
that the factor a4 together with the sum over Λ is just the discretization of
the space–time integral and thus lima→0 SG[U ] = SG[A]. This completes our
discussion of the naive continuum limit a → 0 for the Wilson gauge action.

Concluding this section we remark that different lattice actions for the
gauge fields have been proposed in order to reduce cutoff effects further. We
return to this issue in Chap. 9.

2.4 Formal expression for the QCD lattice path integral

Having constructed the fermion and gauge field actions on the lattice we can
now write down the complete expression for the lattice QCD path integral
formula for Euclidean correlators. As already announced, the preliminary for-
mulation presented here will be refined further in subsequent chapters. Never-
theless, we find such an intermediate summary helpful for understanding the
line of the construction.

2.4.1 The QCD lattice path integral

Following the discussion of Sect. 1.4 we write Euclidean correlators as a lattice
path integral in the form

〈O2(t)O1(0)〉= 1
Z

∫
D

[
ψ,ψ

]
D[U ] e−SF [ψ,ψ,U ]−SG[U ] O2[ψ,ψ, U ]O1[ψ,ψ, U ] ,

(2.55)
where the partition function Z is given by

Z =
∫

D
[
ψ,ψ

]
D[U ] e−SF [ψ,ψ,U ]−SG[U ] . (2.56)
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The quantization of the system in the path integral formalism is implemented
as an integral over all field configurations. On the lattice the corresponding
path integral measures are products of measures of all quark field components
and products of measures for all link variables:

D
[
ψ,ψ

]
=

∏

n∈Λ

∏

f,α,c

dψ(f)(n)α
c

dψ
(f)

(n)α
c

, D[U ] =
∏

n∈Λ

4∏

µ=1

dUµ(n) .

(2.57)
Both the fermion and gauge field measures shown here will be discussed in
more detail in subsequent sections. For the fermion fields we have to include
the Pauli’s principle, turning the spinors ψ and ψ into anticommuting vari-
ables. These so-called Grassmann numbers and the corresponding rules of
integration will be discussed in Chap. 5. For the gauge fields we have denoted
in (2.57) the measure for a single link variable as dUµ(n), but not yet speci-
fied how we implement the integration over the group manifold of SU(3). This
leads to the concept of Haar measure which we discuss in the next chapter.
Despite these issues, the expressions in (2.57) already incorporate some of the
essential features of lattice QCD, in particular the reduction of the original
quantum fields to a countable number of classical variables.

As discussed in Sect. 1.4, in the path integral quantization (2.55) the con-
figurations to be integrated over are weighted with the Boltzmann factor of
the Euclidean action. The corresponding lattice versions of the fermion and
gauge parts of the action have been derived as (compare (2.36) and (2.49))

SF [ψ,ψ, U ] = a4

Nf∑

f=1

∑

n∈Λ

(
ψ

(f)
(n)

4∑

µ=1

γµ
Uµ(n)ψ(f)(n+µ̂) − U−µ(n)ψ(f)(n−µ̂)

2a

+ m(f) ψ
(f)

(n)ψ(f)(n)

)
+ terms discussed in Chap. 5, (2.58)

where we now also sum over Nf flavors of quarks. We stress again that the
fermion action has to be augmented with another term in order to remove
lattice artifacts (see Chap. 5). The gauge action, however, is ready to go and
is taken over unchanged from (2.49):

SG[U ] =
2
g2

∑

n∈Λ

∑

µ<ν

Re tr [1− Uµν(n)] . (2.59)

Let us remark that the functionals O1[ψ,ψ, U ] and O2[ψ,ψ, U ] are translations
of the operators Ô1 and Ô2 acting in Hilbert space. The translation proceeds as
expressed in (1.81) by evaluating the operators between field eigenstates. We
stress that the functional O2 depends only on the fields with time argument
nt related to Euclidean time t on the right-hand side of (2.55) via t = ant.
The fields in the functional O1 depend only on the fields with t = 0.
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Equations (2.55), (2.56), (2.57), (2.58), and (2.59) comprise our current
status in the construction of lattice QCD. So far we discussed the fundamental
fields describing quarks and gluons and put them onto the lattice – quarks on
the sites and the gauge fields on the links of the lattice. In order to allow for
color rotations of the fermion fields in the same way as in the continuum, the
gauge fields were introduced as group-valued link variables. Subsequently, we
showed that products of link variables along closed paths are gauge-invariant
and we have used the plaquette to construct Wilson’s gauge action. Finally,
we put together these ingredients according to the path integral quantization
recipe of Sect. 1.4. Operators are translated into functionals of classical fields.
These functionals are weighted with the Boltzmann factor and this product is
then integrated over all possible field configurations. The precise definition of
this integration – Grassmann integration for the fermions, Haar measure for
the link variables – will be discussed in subsequent chapters.
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3

Pure gauge theory on the lattice

In the last chapter we started the construction of QCD on the lattice. We dis-
cussed a particularly important feature of QCD, namely the self-interaction
of gluons. This self-interaction makes pure gluodynamics, i.e., QCD with-
out quarks, an interesting, highly nontrivial theory. Pure gluodynamics shows
color confinement, an important property of full QCD. Since gluodynamics is
much easier to handle than QCD with quarks, it is an important subject for
studies of confinement and its underlying mechanisms.

In this chapter we complete the construction of gluodynamics on the lattice
by discussing the integration measure for the link variables. After a section
about gauge invariance and gauge fixing we discuss the potential between two
static quark sources. The static quark potential can then be used to set the
scale, i.e., to determine the value of the lattice spacing a as a function of the
gauge coupling g.

Before we come to these topics, let us briefly collect the formulas defining
pure gauge theory on the lattice. Expectation values of observables O (where
O may also be the product of several terms) are given by

〈O〉 =
1
Z

∫
D[U ] e−SG[U ] O[U ] , (3.1)

where the partition function Z is defined as

Z =
∫

D[U ] e−SG[U ] . (3.2)

The integration measure for the link variables is the product measure

∫
D[U ] =

∏

n∈Λ

4∏

µ=1

∫
dUµ(n) . (3.3)

For the gauge field action we introduced the Wilson action

Gattringer, C., Lang, C.B.: Pure Gauge Theory on the Lattice. Lect. Notes
Phys. 788, 43–71 (2010)
DOI 10.1007/978-3-642-01850-3 3 c© Springer-Verlag Berlin Heidelberg 2010
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SG[U ] =
β

3

∑

n∈Λ

∑

µ<ν

Re tr [1− Uµν(n)] , (3.4)

but we again remark that other formulations are being used as well. In (3.4)
we use a widely used abbreviation

β =
6
g2

, (3.5)

the so-called inverse coupling. Note that this is the definition of β for the case
of SU(3). The expression for the general case of SU(N) is given in (3.93).

3.1 Haar measure

In the construction of the QCD lattice action, the link variables Uµ(n) are
introduced as elements of SU(3). We now address the definition of the indi-
vidual measures dUµ(n) in the product measure of (3.3) which integrates the
link variables Uµ(n) over the whole group manifold of SU(3). We consider the
problem in a more general way and discuss the measure dU with U being an
element of a Lie group, i.e., a group where the elements depend continuously
on some parameters.

3.1.1 Gauge field measure and gauge invariance

An important restriction for the gauge field measure comes from the gauge
invariance of our theory. In the last chapter we introduced the gauge trans-
formation of the link variables as

Uµ(n) → U ′
µ(n) = Ω(n)Uµ(n)Ω(n + µ̂)† . (3.6)

The group-valued matrices Ω(n) can be chosen independently at each lattice
site n. The action SG[U ] for the gauge field is invariant under these transfor-
mations and we have

SG[U ′] = SG[U ] . (3.7)

As for any integral, the result of a path integral should be invariant under
a change of variables, in particular under the gauge transformation (3.6). For
the partition function this requirement reads

Z =
∫

D[U ] e−SG[U ] =
∫

D[U ′] e−SG[U ′] =
∫

D[U ′] e−SG[U ] , (3.8)

where in the last step we have used the gauge invariance (3.7) of the gauge
action. Comparing the first and the final expression in (3.8) we obtain

D[U ] = D[U ′] . (3.9)
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Using the fact that D[U ] is a product measure (compare (3.3)), we derive the
condition

dUµ(n) = dUµ(n)′ = d
(
Ω(n)Uµ(n)Ω(n + µ̂)†

)
, (3.10)

for the integration over the individual link variables. This property is one of
the defining properties of the Haar measure.

3.1.2 Group integration measure

The requirement of gauge invariance leads us to a structure which is well-
known in the mathematical literature, the so-called Haar measure. This is a
measure for integration over a continuous compact group G. We have derived
the condition (3.10) for the integration over the single group variable Uµ(n).
Since Ω(n) and Ω(n + µ̂) can be chosen independently, the measure dU for
a group element must be invariant under left- and right multiplication with
another group element V ∈ G, i.e.,

dU = d(U V ) = d(V U) . (3.11)

The last equation, together with the normalization (integration over all of G)
∫

dU 1 = 1 , (3.12)

are the defining properties of the Haar measure for the integration over com-
pact Lie groups. As announced, we discuss the measure not only for SU(3),
but for more general compact Lie groups G, such as SU(N) or U(1). For
these cases we now give an explicit construction of the Haar measure. Let
U = U(ω) be an element of the compact Lie group G in the exponential rep-
resentation (A.2), parameterized by the set of real numbers ω(k). We have
already discussed (see also Appendix A.1) that

(
∂/∂ω(k)U(ω)

)
U(ω)−1 is in

the Lie algebra of the group. Based on these Lie algebra-valued objects we
can define a metric ds2 on the group as (we use summation convention for
n,m)

ds2 ≡ tr

[
∂U(ω)
∂ω(n)

U(ω)−1

(
∂U(ω)
∂ω(m)

U(ω)−1

)†
]
dω(n)dω(m) = g(ω)nmdω(n)dω(m).

(3.13)
From this equation we read off a metric tensor g(ω),

g(ω)nm = tr

[
∂U(ω)
∂ω(n)

U(ω)−1

(
∂U(ω)
∂ω(m)

U(ω)−1

)†
]

= tr
[
∂U(ω)
∂ω(n)

∂U(ω)†

∂ω(m)

]
.

(3.14)
In terms of the metric g(ω) we can define the measure dU as

dU = c
√

det[g(ω)]
∏

k

dω(k) . (3.15)



46 3 Pure gauge theory on the lattice

Because all groups we consider are compact groups, the parameters ω(k) need
only be integrated over finite intervals for U(ω) to cover all group elements.
The constant c in (3.15) can be used to fulfil the normalization condition
(3.12). What is left to show is that the measure defined by (3.14) and (3.15)
is indeed invariant under transformations within the group, i.e., that it obeys
(3.11). Let U(ω̃) be the group element that is obtained from U(ω) by left- or
right multiplication with some other group element V . The parameters ω̃(k)

are related to the original parameters ω(k) by some functional relation, i.e.,
we can write ω(k) = ω(k)(ω̃). The product measure for the ω(k) transforms as

∏

k

dω(k) = det[J ]
∏

k

dω̃(k) , (3.16)

where the Jacobi determinant is given by

Jkn =
∂ω(k)

∂ω̃(n)
. (3.17)

The metric tensor g(ω̃) for U(ω̃) is given by

g(ω̃)nm = tr
[
∂U(ω̃)
∂ω̃(n)

∂U(ω̃)†

∂ω̃(m)

]

= tr
[
∂U(ω)
∂ω(k)

∂U(ω)†

∂ω(l)

]
∂ω(k)

∂ω̃(n)

∂ω(l)

∂ω̃(m)
= g(ω)kl Jkn Jlm . (3.18)

In matrix notation the last equation reads (T denotes transposition)

g(ω̃) = JT g(ω)J . (3.19)

Using the factorization property of determinants we obtain from this equation

det[g(ω̃)] = det[g(ω)] det[J ]2 . (3.20)

Putting things together, we find that our group measure is indeed invariant,

dŨ = c
√

det[g(ω̃)]
∏

k

dω̃(k) = c
√

det[g(ω)] det[J ]
∏

k

dω̃(k)

= c
√

det[g(ω)]
∏

k

dω(k) = dU . (3.21)

In the first step we used (3.20) and in the second step (3.16). This completes
the proof of invariance of the Haar measure.

3.1.3 A few integrals for SU(3)

In order to become familiar with the properties of the Haar measure, we now
discuss a few SU(3) integrals which we will need subsequently. Our discussion
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is based on the invariance of the measure dU . The integrals we study are
integrals over products of entries Uab of group elements U in the fundamental
representation. In particular, we consider the integrals

∫

SU(3)
dU Uab = 0 , (3.22)

∫

SU(3)
dU UabUcd = 0 , (3.23)

∫

SU(3)
dU Uab(U†)cd =

1
3
δadδbc , (3.24)

∫

SU(3)
dU UabUcdUef =

1
6
εaceεbdf . (3.25)

The basic tool for analyzing these integrals is the following equation for inte-
grals over functions f(U):

∫

SU(3)
dU f(U) =

∫

SU(3)
dU f(V U) =

∫

SU(3)
dU f(U W ) . (3.26)

The elements V and W are arbitrary SU(3) matrices. This relation follows
directly from the invariance (3.11) of the measure. Applying (3.26) to the
left-hand side of the first integral (3.22) we obtain

∫

SU(3)
dU Uab =

∫

SU(3)
dU (V U)ab = Vac

∫

SU(3)
dU Ucb , (3.27)

where the index c is summed over. In order to fulfil this equation in a non-
trivial way, we must have Vac = δac. However, the last equation must hold
for arbitrary group elements V , such that the integral itself must vanish, thus
establishing (3.22). In an equivalent way one shows (3.23).

The Eq. (3.24) is somewhat more interesting. Let us for the moment set
b = c in the integrand and sum over b. We obtain

∫

SU(3)
dU

(
Ua1(U†)1d + Ua2(U†)2d + Ua3(U†)3d

)

=
∫

SU(3)
dU (UU†)ad =

∫

SU(3)
dU δad = δad . (3.28)

In the second step we have used U† = U−1 and in the last step the normaliza-
tion of the Haar measure (3.12). For the left-hand side of (3.28) it is important
to realize that the three contributions are entirely equivalent. For example the
first term can be transformed into the second term by exchanging rows 1 and
2 as well as columns 1 and 2. This operation transforms an element of SU(3)
into another group element, and both of these elements are summed over in
the group integral. This equivalence implies that each of the three terms on
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the left-hand side contributes one-third to the result on the right-hand side
of (3.28). Thus we have established formula (3.24) for the case b = c (not
summed). For b '= c we can again apply (3.26) to show that for this case the
integral has to vanish. The essence of (3.26) is that the integral only gives a
nonvanishing result if the integrand contributes to 1, i.e., the Haar measure
projects out the contribution of the integrand to the so-called trivial or singlet
representation of the group.

From (3.24) immediately follows a relation that will be useful later:
∫

dU tr[V U ] tr[U† W ] =
1
3

tr[V W ] . (3.29)

This equation allows one to integrate the common link variable that occurs in
a product of two plaquettes, resulting in a trace of link variables around the
two plaquettes. This result is depicted in Fig. 3.1.

3
1

Fig. 3.1. Integrating out the common link of a product of two plaquettes

Essentially the same mechanism as in (3.24) is also at work in the integral
(3.25): Again, different possible combinations of the integrand can be summed
to produce a singlet. In particular, if one sets the second indices b, d, f of the
integrand to the values b = 1, d = 2, f = 3, and sums the first indices a, c, e
with the completely anti-symmetric ε-tensor, one finds

εace Ua1 Uc2 Ue3 = det[U ] = 1 , (3.30)

where we have used the definition of the determinant and the fact that ele-
ments of SU(3) have det[U ] = 1. If two of the second indices in the integrand
of (3.30) are equal, say b = d = 1, then summing with the ε-tensor cor-
responds to a determinant with two equal columns, and therefore this sum
vanishes. If two of the second indices are interchanged with respect to (3.30),
e.g., b = 2, d = 1 then this corresponds to the interchange of two rows and
the determinant acquires an extra minus sign. Thus, we obtain the following
formula for summing the integrand of (3.30) with the ε-tensor

εace Uab Ucd Uef = εbdf . (3.31)

Thus, whenever the set of the first coefficients a, c, e and the set b, d, f both
give rise to nonvanishing ε-tensor contributions (εace '= 0, εbdf '= 0), the in-
tegrand gives a contribution to the singlet. The sign of this contribution is
given by the combination of ε-tensors on the right-hand side of (3.25). If this
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product of ε-tensors vanishes for the given combination a, b, c, d, e, f , the in-
tegrand does not contribute to the singlet and the integral vanishes. Using
the same argument as before, based on the simultaneous interchange of rows
and columns, one finds that all the nonvanishing contributions have the same
weight. The fact that there are six terms on the left-hand side of (3.31) then
determines the factor 1/6 on the right-hand side of (3.25).

This completes our excursion into group integrals. The integrals (3.22),
(3.23), (3.24), (3.25), and (3.29) can easily be generalized to the case of SU(N).
An introductory account of more general SU(N) group integrals can be found
in the book by Creutz [1]. We finally remark that for a treatment of the
strong coupling expansion in more detail than in our Sect. 3.4, the concept of
character expansion is a powerful tool. However, character expansion, as well
as the general representation theory of SU(N), is beyond the scope of this
book and we refer the reader to [2–5].

3.2 Gauge invariance and gauge fixing

We have seen that gauge invariance is one of the central principles in the
construction of QCD. In this section we discuss the freedom of choosing a
gauge in more detail and address the different roles of gauge fixing in the
continuum and on the lattice. We argue that physical observables have to
be gauge-invariant. We stress that all the gauge properties discussed here for
pure gauge theory can be taken over to the full theory with fermions.

3.2.1 Maximal trees

Let us begin our discussion of gauge fixing with a kind of gauge that is partic-
ular for the lattice. We show that in a certain set of link variables, a so-called
maximal tree, the link variables can be set to the identity element 1 and left
out in the integration of the gauge field.

We start with an arbitrary configuration of link variables Uµ(n). In the
beginning of our construction all gauge transformation matrices Ω(n) are set
to the identity 1. We pick a single-link variable Uµ0(n0) and set the transfor-
mation matrix Ω(n0+ µ̂0) at the endpoint of the link to the value Uµ0(n0),
keeping all other Ω(n) at 1. Our link Uµ0(n0) thus is transformed to

Uµ0(n0)′ = Ω(n0)Uµ(n0)Ω(n0 + µ̂0)† = 1Uµ(n0)Uµ(n0)† = 1 . (3.32)

The transformation with the nontrivial Ω(n0 + µ̂0) will also affect all link
variables starting at the site n0 + µ̂0, in particular

Uµ1(n0 + µ̂0)′ = Ω(n0 + µ̂0)Uµ1(n0 + µ̂0) . (3.33)

For these transformed links we can repeat the step of (3.32) and choose the
matrices Ω at their endpoints such that also these links are transformed to the
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Fig. 3.2. Sketch of a maximal tree on a 2D sublattice. The fat lines represent link
variables that are set to 1 and omitted in the integration

identity 1. The whole procedure can be repeated until we hit a link Uµ!(n#)
which connects to another link that already has been transformed to 1 before.
If we wanted to transform also this particular link Uµ!(n#), according to (3.33)
we would transform the other link, which is already at 1, away from the
identity. This restricts the set of links that can be transformed to 1 to a
cluster of links which does not contain closed loops. This requirement defines a
maximal tree as a maximal collection of link variables that can be transformed
to 1 (note that there are many different maximal trees). In Fig. 3.2 we show
an example of a maximal tree on a 2D sublattice. Note, however, that also
smaller subsets than maximal trees can be gauged to 1.

Let us now discuss the consequences of the freedom to fix the gauge on a
maximal tree or a subset of a maximal tree. We consider the vacuum expec-
tation value of some gauge-invariant observable O as defined in (3.1), (3.2),
and (3.3). Gauge invariance of O implies

O[U ] = O[U ′] , (3.34)

where the link variables in the configurations U and U ′ are related by a gauge
transformation (3.6). We will discuss the need for gauge invariance of our
observables in more detail below. Also the action and the measure are gauge-
invariant, i.e.,

SG[U ] = SG[U ′] ,

∫
D[U ] =

∫
D[U ′] . (3.35)

Equations (3.34) and (3.35) imply that the whole integrand and the measure
in (3.1) are unchanged when setting the links in a maximal tree to 1. Since
the construction of a maximal tree works for any particular choice of link
variables, we can keep the links in the maximal tree at 1 throughout the whole
integration

∫
D[U ]. Since the Haar measure is normalized to 1 (see (3.12)),

the links in the maximal tree can be omitted in the integration altogether.
Thus, we can summarize the procedure of fixing the gauge to a maximal tree
as follows: Select a maximal tree, or a smaller set of links without closed
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loops, and set the links in this set to 1. Subsequently, integrate over all link
variables that are not contained in the chosen set. The expectation value of a
gauge-invariant observable is unaffected, whether we fix the gauge or not.

The role of gauge fixing on the lattice is very different from the role it
plays in the continuum. Fixing the gauge on the lattice is a step which we
can implement to simplify some calculations or to make the interpretation of
observables more transparent (see the discussion of the Wilson loop below).
However, fixing the gauge is not a necessary step to make vacuum expectation
values of operators well defined and computable. In the continuum the situ-
ation is different: There the kernel of the quadratic part of the gluon action
(the inverse gluon propagator) has zero modes caused by pure gauges, i.e.,
gauge transformations of the trivial gauge field configuration. These modes
give rise to singularities in the gluon propagator that have to be removed by
choosing a particular gauge. Only after that step can the continuum theory
be well defined in perturbation theory.

We have already mentioned that the procedure of fixing the gauge via a
maximal tree is special to the lattice formulation. There is, however, a certain
gauge, the so-called temporal gauge, which has a corresponding counterpart
in the continuum. On a lattice with infinite temporal extent we can set all
time-like links to 1, i.e., we can set

U4(n) = 1 ∀ n . (3.36)

We remark that this is not a maximal tree but a smaller set. In the (Euclidean)
continuum theory the temporal gauge is defined by A4(x) = 0, which matches
the lattice definition due to the relation U4 = exp(i aA4). The temporal gauge
is important for the Hamiltonian formulation of continuum gauge theories (see
any textbook on quantum field theory, such as [6–8]). We will make use of the
temporal gauge when we introduce and discuss the Wilson loop.

3.2.2 Other gauges

Other gauges that are used in the continuum also play a role on the lattice,
in particular when one matches lattice results to continuum calculations done
in a particular gauge (e.g., Landau gauge, Coulomb gauge). Also in lattice
studies of the confinement mechanism special gauges, such as the maximally
abelian gauge, are used. These gauges are not implemented via maximal trees
but typically through extremizing some functional. As an example, which
illustrates how such gauges are constructed, we briefly discuss the Landau
gauge, which we will need in Chap. 11 when we discuss renormalization.

In the continuum the Landau gauge is defined by the condition

∂µAµ(x) = 0 . (3.37)

The important step is to translate this prescription, which in the continuum is
formulated in terms of the algebra-valued gauge field Aµ(x), into a prescription
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that can be used on the lattice, where we work with the group-valued link
variables Uµ(n). In the first step we show that requiring the Landau gauge
condition is equivalent to finding an extremal value of the functional

W [A] =
4∑

µ=1

∫
d4x tr

[
Aµ(x)2

]
, (3.38)

with regard to gauge transformations. If W [A] is at an extreme value, it has
to be invariant when we apply an infinitesimal gauge transformation defined
by Ω(x) = exp(i εH(x)). Note that H(x) is a traceless hermitian matrix, such
that Ω(x)† = exp(−i εH(x)). A line of algebra shows that, for our infinitesimal
transformation, the gauge transformation (2.11) reduces to

Aµ(x) → Aµ(x) + ε (i [H(x), Aµ(x)] − ∂µH(x)) + O(ε2) . (3.39)

Inserting the transformed gauge field into the functional W [A], one finds that
it changes according to

W [A] → W [A] − 2 ε
4∑

µ=1

∫
d4x tr [Aµ(x) ∂µH(x)] + O(ε2)

= W [A] + 2 ε
4∑

µ=1

∫
d4x tr [(∂µAµ(x)) H(x)] + O(ε2) , (3.40)

where the periodicity of the trace makes the contribution of the commutator
in (3.39) vanish. In the second step we performed an integration by parts
(assuming that H(x) vanishes for large x). If W [A] is at an extremum, then
the O(ε) term in (3.40) has to vanish. Since H(x) can be chosen as an arbitrary
traceless hermitian matrix, this statement is equivalent to (3.37).

Transforming the W [A] into a corresponding lattice prescription is simple.
We can consider the functional

Wlat[U ] = −a2
∑

n

4∑

µ=1

tr
[
Uµ(n) + Uµ(n)†

]
, (3.41)

which upon expansion of Uµ(n) = exp (i aAµ(n)) in small a turns into W [A]
(the additional constant is irrelevant).

The goal is to find a gauge transformation Ω which shifts Wlat[U ] to a
minimal value for a given gauge configuration. More explicitly we have to find
the minimum of

F [Ω] = −a2
∑

n

4∑

µ=1

tr
[
Ω(n)Uµ(n)Ω(n + µ̂)† + Ω(n + µ̂)Uµ(n)† Ω(n)†

]
,

(3.42)
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as a function of the matrices Ω(n) for fixed Uµ(n). This is a large-scale opti-
mization problem which can be attacked with methods such as overrelaxation
or simulated annealing (see, e.g., [9]). A particular problem is the constraint
that the matrices Ω(n) have to be in SU(3). We discuss how such matrices
are generated numerically in Chap. 4. We remark that a straightforward mod-
ification (sum µ from 1 to 3 only) of the method presented here for Landau
gauge allows one to implement the Coulomb gauge condition

∑3
j=1 ∂jAj = 0

on the lattice. For a review of gauge-fixing procedures on the lattice see [10].

3.2.3 Gauge invariance of observables

In our discussion of maximal trees we already assumed that physical observ-
ables O are gauge-invariant, i.e., that they obey (3.34). We now discuss this
requirement in more detail.

By inspecting the integral (3.22) one sees that the attempt to use an indi-
vidual link variable as an observable fails because its expectation value van-
ishes. Such an individual link variable is an example of a non-gauge-invariant
functional O[U ], i.e., it obeys O[U ] '= O[U ′] for configurations U and U ′ related
by a gauge transformation. The expectation value of any non-gauge-invariant
functional is equal to the expectation of its average over the gauge group. To
see this we perform a gauge transformation Uµ(n) → Ω(n)Uµ(n)Ω(n + µ̂)†
and obtain an expectation value of an arbitrary observable

〈O〉 =
1
Z

∫
D[U ] e−SG[U ]O[U ] =

1
Z

∫
D[ΩUΩ†] e−SG[ΩUΩ†]O[ΩUΩ†]

=
1
Z

∫
D[U ] e−SG[U ]O[ΩUΩ†] , (3.43)

where in the last step we used both the gauge invariance of the action and
the invariance of the Haar measure. Since the values Ω(n) can be chosen
arbitrarily, we may even average over the gauge group:

〈O〉 =
1
Z

∫
D[U ] e−SG[U ]

(∫
D[Ω] O[ΩUΩ†]

)
=

∫
D[Ω]

〈
O[ΩUΩ†]

〉
.

(3.44)
Following these lines of argument, Elitzur [11] proved that local gauge sym-
metries cannot be broken spontaneously.

According to (3.44) we find for our example of a single-link variable

〈Uµ(n)〉 =
∫

dΩ(n) 〈Ω(n)Uµ(n)〉 =
∫

dΩ(n) Ω(n) 〈Uµ(n)〉 = 0 . (3.45)

We remark that for some calculations it is indeed advantageous to work
with observables that are not gauge-invariant and to evaluate them after the
gauge has been fixed. As mentioned, this procedure is useful when lattice
results are compared to a continuum calculation done in a particular gauge.
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3.3 Wilson and Polyakov loops

In this section we present observables which allow one to determine the po-
tential between two static color sources. These observables are the so-called
Wilson and Polyakov loops which we first introduce and only later give their
interpretation.

3.3.1 Definition of the Wilson loop

In the last section we discussed that physical observables have to be gauge-
invariant. A prototype of a gauge-invariant object, made from only the gauge
fields, is the trace of a product of link variables along a closed loop which we
introduced in (2.46),

L[U ] = tr




∏

(n,µ)∈L

Uµ(n)



 . (3.46)

Here L is a closed loop of links on the lattice and the product in (3.46) runs
over all these links. The Wilson loop which we introduce now is of that type.

A Wilson loop WL is made from four pieces, two so-called Wilson lines
S(m,n, nt), S(m,n, 0), and two temporal transporters T (n, nt), T (m, nt).
The Wilson line S(m,n, nt) connects the two spatial points m and n along
some path Cm,n with all link variables restricted to time argument nt,

S(m,n, nt) =
∏

(k,j)∈Cm,n

Uj(k, nt) . (3.47)

The temporal transporter T (n, nt) is a straight line of nt link variables in
time direction, all situated at spatial position n,

T (n, nt) =
nt−1∏

j=0

U4(n, j) . (3.48)

Attaching the four pieces to each other gives a closed loop L,

L : (m, nt)
S−→ (n, nt)

T †
−→ (n, 0) S†

−→ (m, 0) T−→ (m, nt) . (3.49)

The Wilson loop WL is obtained by taking the trace,

WL[U ] = tr
[
S(m,n, nt)T (n, nt)†S(m,n, 0)†T (m, nt)

]
= tr




∏

(k,µ)∈L

Uµ(k)



 .

(3.50)
If the piece of loop Cm,n used in S(m,n, nt) is a straight line we speak of a
planar Wilson loop. Note that this can be the case only if m and n fall on
a common coordinate axis. Otherwise the Wilson loop is called nonplanar.
Figure 3.3 shows an example of a planar and a nonplanar loop.
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Fig. 3.3. Examples for a planar (left-hand side plot) and a nonplanar (right-hand
side) Wilson loop. The horizontal direction is time

3.3.2 Temporal gauge

Before we can discuss the physical interpretation of the Wilson loop we must
discuss a peculiarity of gauge theories. If one wants to evaluate the canonical
momentum (1.45) for the gauge field action (2.17) one finds that for the
temporal component A4 the canonical momentum vanishes. The reason is
that the field strength tensor Fµν(x) = −i[Dµ(x), Dν(x)] does not contain
derivatives of A4 with respect to time. A possible way out of this problem is
to use a gauge where

A4(x) = 0 , (3.51)

i.e., the aforementioned temporal gauge. We remark that simply stating (3.51)
does not by far do justice to the subtleties involved in the quantization of gauge
theories, and we refer the reader to field theory books such as [6–8] on this
issue. On the lattice, temporal gauge corresponds to the condition (3.36).

We stress that in the following we use the temporal gauge only to find
the physical interpretation of the Wilson loop. For the actual computation
of the expectation value we do not need to fix the gauge. The result for the
expectation value of the Wilson loop is of course the same whether we fix the
gauge or not.

3.3.3 Physical interpretation of the Wilson loop

In the temporal gauge (3.36), discussed in the last paragraph, the temporal
transporters become trivial,

T (n, nt) =
nt−1∏

j=0

U4(n, j) = 1 , (3.52)

and we obtain the following chain of identities

〈WL〉 = 〈WL〉temp =
〈
tr

[
S(m,n, nt)S(m,n, 0)†

]〉
temp

, (3.53)

where in the first step we have used the fact that the expectation value of a
gauge-invariant observable remains unchanged when fixing the gauge. In the
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second step we used WL[U ] = tr
[
S(m,n, nt)S(m,n, 0)†

]
, which follows from

the definition of the Wilson loop in (3.50) and the triviality of the temporal
transporter in temporal gauge (3.52).

The temporal gauge used in (3.53) makes explicit that the Wilson loop
is the correlator of two Wilson lines S(m,n, nt) and S(m,n, 0) situated at
time slices nt and 0. Thus we can interpret this correlator using our first key
equation in the form of (1.21). Accordingly, the correlator behaves for large
total temporal extent T of our Euclidean lattice as (a, b are summed)
〈
tr

[
S(m,n, nt)S(m,n, 0)†

]〉
temp

=
∑

k

〈0|Ŝ(m,n)ab|k〉〈k|Ŝ(m,n)†ba|0〉 e−tEk ,

(3.54)
where the Euclidean time argument t is related to nt via t = ant with a
being the lattice spacing. The sum in (3.54) runs over all states |k〉 that have
a nonvanishing overlap with Ŝ(m,n)†|0〉.

In the next paragraph we will argue that the states |k〉 with nonvanishing
overlap are states describing a static quark–antiquark pair located at spatial
positions m and n. Thus in (3.54) the term with the lowest energy E1 is
expected to be the state describing our static quark–antiquark pair. Higher
states could be, e.g., this pair plus additional particle–antiparticle combina-
tions with the quantum numbers of the vacuum. The energy E1 is thus identi-
fied with the energy of the quark–antiquark pair, which is the static potential
V (r) at spatial quark separation r,

E1 = V (r) with r = a |m − n| . (3.55)

Combining (3.53), (3.54), and (3.55) we obtain

〈WL〉 ∝ e−t V (r)
(
1 + O(e−t ∆E)

)
= e−nt a V (r)

(
1 + O(e−nt a ∆E)

)
. (3.56)

Thus we find that we can calculate the static quark–antiquark potential from
the large-nt behavior of the Wilson loop. The corrections in (3.56) are expo-
nentially suppressed, where ∆E is the difference between V (r) and the first
excited energy level of the quark–antiquark pair.

We stress that Wilson loops are oriented. However, reversing the orien-
tation, which on an algebraic level is complex conjugation (compare (2.34)),
simply corresponds to the interchange of quark and antiquark. Thus both
orientations serve equally well for a determination of the potential V (r).

The Wilson loops we have introduced are not necessarily planar. In Fig. 3.3
we show two Wilson loops, a planar one (left-hand side plot) and a nonplanar
loop (right-hand side). Both loops have nt = 5 (the horizontal direction is
time). The planar loop has r = 3 a, the nonplanar loop has r =

√
32 + 1 a =√

10 a. Thus with nonplanar Wilson loops we can calculate the potential V (r)
not only at distances r that are integer multiples of a, but also at intermediate
points. Nonplanar Wilson loops also allow one to study whether rotational
invariance is eventually restored when approaching the continuum limit.
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Wilson loops may also be used as operators for purely gluonic bound states,
the so-called glueballs. The exponential decay of the corresponding Euclidean
correlation functions allow to extract the mass spectrum of these states (cf.
Chap. 6 and the discussion in [12]).

3.3.4 Wilson line and the quark–antiquark pair

To complete our physical interpretation of the Wilson loop we still need to
show that the states Ŝ(m,n)†ba|0〉 do indeed have overlap with a quark–
antiquark pair. However, the true derivation that S(m,n) is the correct ex-
pression to describe a quark–antiquark pair in the limit of large quark mass,
will only be given in Chap. 5 after we have provided the final definition of
the quark fields on the lattice. There we will show that the quark propagator
reduces to S(m,n) in the limit of infinitely heavy quarks. For now we are
content with showing that S(m,n) has the same transformation properties
as a quark–antiquark pair under a gauge transformation.

According to our discussion in Sect. 2.1, a quark–antiquark pair at spatial
positions am, an is described by a product of fields

Q(m,n)ab ≡ ψ(m)α
a
ψ(n)β

b
. (3.57)

The quark fields carry spinor (α, β) and color (a, b) indices. However, here we
are not interested in the dependence of the potential on the spinor indices,
and we ignore them in the definition of Q(m,n)ab. Q(m,n)ab is not gauge-
invariant. According to (2.7), it transforms under gauge transformations as

Q(m,n)ab → Ω(m)aa′ Q(m,n)a′b′ Ω(n)†b′b . (3.58)

From the discussion following the gauge transformation properties of link
variables (2.33), we know that the products P [U ] of link variables, defined in
(2.43), transform exactly as required (compare (2.44)),

S(m,n)ab → Ω(m)aa′ S(m,n)a′b′ Ω(n)†b′b . (3.59)

Thus we have at least verified that the Wilson line has the same transformation
properties as the quark–antiquark pair.

3.3.5 Polyakov loop

Let us conclude this section with discussing a modification of the Wilson
loop, the so-called Polyakov loop [13] (also called thermal Wilson line). Here
we work with boundary conditions for the gauge fields that are periodic in
the time direction. We make the temporal extent nt of the Wilson loop as
large as possible on our lattice, i.e., we set nt = NT , where NT is the total
number of lattice points in time direction. Then the spatial pieces of the
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Wilson loop (the non-horizontal lines in Fig. 3.3) sit on top of each other but
are oriented in opposite direction. Due to the periodic boundary conditions
we cannot gauge-transform all temporal links to 1. We can, however, gauge
the spatial pieces of our loop to 1. Then the Wilson loop reduces to the
two disconnected paths (compare (3.48)) T (m, NT ), T (n, NT )† of temporal
link variables, located in space at the two positions m and n. Both these
paths wind around the temporal direction of the lattice but have opposite
orientations.

We can make this new observable gauge-invariant by taking the trace for
each of the two loops individually. This is simply a rearrangement of the color
indices and leaves the interpretation of the observable the same. In this way
we introduce the so-called Polyakov loop

P (m) = tr




NT −1∏

j=0

U4(m, j)



 , (3.60)

which as a trace over a closed loop is gauge-invariant. We now can abandon
our special gauge and obtain (r = a|m − n|)

〈P (m)P (n)†〉 ∝ e−NT a V (r)
(
1 + O(e−NT a∆E)

)
. (3.61)

The numerical calculation of the static potential which we present in Chap. 4
is based on the Polyakov loop, i.e., on the two Eqs. (3.60) and (3.61). The
identity of the potential as defined via Wilson or Polyakov loops, respectively,
is not rigorously proven; there is a proof that the string tension derived from
the Polyakov loop correlator is bounded from above by that of the Wilson
loop [14].

An alternative way of motivating the introduction of the Polyakov loop
is to couple a current jµ to the field Aµ by defining an operator O =
tr

[
P exp(i

∫
d4z jµ(z)Aµ(z))

]
. Using the current corresponding to a static

charge at position x, given by jµ(z) = (0, 0, 0, 1) δ(z − x) (Euclidean met-
ric), on the lattice the operator O translates to our Polyakov loop.

We finally remark that the vacuum expectation value 〈P (n)〉 of a single
Polyakov loop is also an important variable. As we will discuss in Chap. 12,
it is an order parameter for the deconfinement transition in gluodynamics at
finite temperature.

3.4 The static quark potential

Having introduced the Wilson loop as an observable for the static quark po-
tential V (r), we now discuss the general form of V (r). As a first step we
calculate the potential in the limit of strong coupling g (corresponding to
small β – compare (3.5)) and find that this gives rise to a linearly rising term.
Subsequently, we argue that, for small coupling g, we obtain the 1/r potential
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familiar from electrodynamics. Thus, we find that the static QCD potential
can be parameterized by

V (r) = A +
B

r
+ σ r . (3.62)

Since the force between the quarks is the derivative of V (r), the constant A
is only an irrelevant normalization of the energy. The second term in (3.62) is
the Coulomb part of the potential with strength B. Finally, the third contri-
bution is a linearly rising term and the real constant σ is the so-called string
tension. From QCD phenomenology one expects a value of σ ≈ 900 MeV/fm.
After providing the evidence for the individual terms in (3.62), we discuss the
physical implications of the static QCD potential.

3.4.1 Strong coupling expansion of the Wilson loop

In order to demonstrate the presence of the linearly rising term in (3.62),
we calculate the vacuum expectation value of the Wilson loop in the limit of
strong coupling, i.e., large g (small β). More explicitly we compute

〈WC〉 =
1
Z

∫
D[U ] exp

(
−β

3

∑

P

Re tr[1− UP ]

)
tr

[
∏

l∈C
Ul

]
. (3.63)

For this calculation we use a simplified notation: The sum runs over all pla-
quettes P , where each plaquette is counted with only one of the two possible
orientations. The product over l runs over all link variables contained in the
contour C defining the Wilson loop. This expression can be rewritten as

〈WC〉 =
1
Z ′

∫
D[U ] exp

(
β

3

∑

P

Re tr[UP ]

)
tr

[
∏

l∈C
Ul

]

=
1
Z ′

∫
D[U ] exp

(
β

6

∑

P

(
tr[UP ] + tr[U†

P ]
))

tr

[
∏

l∈C
Ul

]
. (3.64)

In the first step we separate the constant factor exp(−β/3
∑

P Re tr[1]) from
the Boltzmann factor exp(−S). Exactly the same constant factor appears in
the partition function Z and we cancel the two factors in the numerator and
the denominator. The partition function without this factor is denoted by Z ′.
In the second step we use

Re tr[UP ] =
1
2

(
tr[UP ] + tr[U†

P ]
)

. (3.65)

We stress that, according to (2.48), hermitian conjugation of the plaquette
variable UP is equivalent to inverting the orientation of the plaquette. Thus
in the second line of (3.64) we explicitly display both orientations of the
plaquette variables UP , which leads to an extra factor 1/2.
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In the form of (3.64) we can now discuss the expansion of the Wilson loop
expectation value for strong coupling (small β). In particular we expand the
Boltzmann factor of (3.64) in β using the Taylor expansion for the exponential
function,

exp

(
β

6

∑

P

(
tr[UP ]+tr[U†

P ]
))

=
∞∑

i,j=0

1
i!j!

(
β

6

)i+j
(
∑

P

tr[UP ]

)i(∑

P

tr[U†
P ]

)j

.

(3.66)
Note that in this expansion we have separated the contributions from clock-
wise oriented plaquettes U†

P and counter-clockwise oriented plaquettes UP .
This is important since for the leading term in the expansion only those pla-
quettes oriented oppositely to the Wilson loop contribute.

For the normalization factor Z ′ it is straightforward to determine the
leading contribution in the small-β expansion. Already the first term with
i = j = 0 in (3.66) gives a nonvanishing contribution to the integral and we
obtain (using the normalization of the Haar measure)

Z ′ =
∫
D[U ] exp

(
β

6

∑

P

(
tr[UP ]+tr[U†

P ]
))

=
∫
D[U ] (1 + O(β))= 1+O(β2) .

(3.67)
The expansion of the numerator of (3.64) is less straightforward. If only the
leading term in the expansion of the Boltzmann factor is kept, then the prod-
uct of link variables building up the observable,

∏
l∈C Ul, gives rise to integrals

of the type (3.22) which all vanish. Thus, in order to find the leading non-
vanishing term of the expansion we have to expand the Boltzmann factor in
small β. This brings down additional link variables from the exponent and in
this way we can saturate the integrals over the links to obtain nonvanishing
contributions of the type (3.24). In sub-leading terms (3.25) also contributes.

If we consider the contour C of the Wilson loop to be a nr ×nt rectangle of
links, then the minimal area AC spanned by this contour contains nA = nr nt

plaquettes (note that nr, nt, nA are positive integers). The physical area AC
is related to the extension of the Wilson loop in physical units anr, a nt by
AC = a2 nA = anr ant. Remembering (3.29) and Fig. 3.1 we find nonvanishing
contributions only when each link variable Uµ(n) in the loop is paired with its
conjugate partner Uµ(n)†. Since we have plaquettes in our action, this must
continue until we have filled the contour C with nA plaquettes obtained from
the expansion of the Boltzmann factor. We depict this contribution in Fig. 3.4.

Note that the plaquettes used for filling the contour have to have the
opposite orientation of the Wilson loop. Only in this way the contributions
at each link have the form of the integrand in (3.24). Since we need at least
nA = nr nt plaquettes from the exponent, the necessary term in the expansion
(3.66) of the exponential is of order nA. Explicitly this leading term reads (note
that from the two orientations in (3.66) only the one opposite to the Wilson
loop contributes)
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∫
D[U ]

1
nA!

(
β

6

)nA
(

∑

P

tr[U†
P ]

)nA

tr

[
∏

l∈C
Ul

]

=
(
β

6

)nA ∫
D[U ]

∏

P∈AC

tr[U†
P ] tr

[
∏

l∈C
Ul

]

= tr[1]
(

β

6

)nA
(

1
3

)nA

= 3 exp
(

nA ln
(

β

18

))
. (3.68)

In the first step of (3.68) we expand the nA-th power over the sum of plaquette
variables with the correct orientation (U†

P ). We keep only the terms where
each of the nA plaquettes P inside the minimal area AC is occupied by the
matching U†

P . There are exactly nA! such products and thus the factor 1/nA!
is canceled. All other terms in the expansion of the nA-th power vanish since
they give rise to integrals of the type (3.22). In the second step we evaluate the
nonvanishing term using the integral (3.29) in the form depicted in Fig. 3.1.
We glue together the plaquette variables inside the Wilson loop first into rows
and then these rows into the full inner block of Fig. 3.4. Another gauge integral
ties this block to the oppositely oriented outer contour of the Wilson loop.
One finds that these steps give rise to the factor (1/3)nA in (3.68). Combining
(3.67) and (3.68) we find

〈WC〉= 3 exp
(

nA ln
(

β

18

))
(1 + O(β))= 3 exp

(
nr nt ln

(
β

18

))
(1 + O(β)) .

(3.69)
According to (3.56) this expression has to be compared to the asymptotic
form, i.e., for large t = ant we have

〈WC〉 ∝ exp (−ant V (r)) . (3.70)

Thus, we conclude that in the strong coupling limit (note that r = anr)

Fig. 3.4. Leading contribution in the strong coupling (small β) expansion of the
Wilson loop. The outer, counter-clockwise-oriented rectangle is the Wilson loop, the
smaller, clockwise-oriented squares are the single plaquette terms from the action
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V (r) = σ r , (3.71)

where the string tension σ is given by the leading order expression

σ = − 1
a2

ln
(

β

18

)
(1 + O(β)) . (3.72)

We remark that it is relatively easy to produce higher corrections to the string
tension. However, since the strong coupling expansion does not play a central
role in modern lattice gauge theory (we will soon see that we are actually
interested in approaching weak coupling), we will not discuss the calculation
of higher terms and the convergence properties of this series.1 Instead, we
stress once more that with a relatively simple expansion we have extracted
from the lattice formulation a linearly rising potential. Below we discuss that
such a term in the potential gives rise to the important feature of confinement.
However, before we come to the discussion of the physical implications, let us
first present the argument for the presence of the Coulomb-type term in the
parameterization (3.62) of the static QCD potential.

3.4.2 The Coulomb part of the static quark potential

The presence of a Coulomb-type interaction can be readily seen from the
behavior of the gluon action in the continuum for small coupling constant
g. This argument is best presented in the normalization of the gauge field
introduced in (2.18) and (2.19), where the gauge field Aµ was rescaled by a
factor of 1/g. In this form the Euclidean continuum gauge field action, written
as a sum over the color components, reads (compare (2.23) and (2.24))

SG[A] =
1
4

8∑

i=1

∫
d4x F (i)

µν (x)F (i)
µν (x) , (3.73)

where the field strength tensor for individual color components is given by

F (i)
µν (x) = ∂µA(i)

ν (x) − ∂νA
(i)
µ (x) − g fijkA(j)

µ (x)A(k)
ν (x) . (3.74)

From (3.74) it is obvious that the self-interaction terms that are specific for
QCD are multiplied by the coupling constant g. Thus, when sending this
coupling to zero, the field strength tensor (3.74) reduces to its abelian coun-
terpart, i.e., it has the form known from QED. Thus, the action (3.73) turns
into a sum over QED-type interactions for each color component. Since we
know that in QED the static potential is of the Coulomb-type,2 we conclude
that the 1/r term should be present in the parameterization (3.62) of the
static QCD potential.

1The original derivation by Wilson [15] has been rigorously proven in [16]. We
refer the reader to Creutz’ book [1] for an elementary presentation or to [17] for a
more advanced calculation.

2See [18] for an elementary derivation of this fact in the path integral formalism.
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3.4.3 Physical implications of the static QCD potential

Let us briefly sketch the physical implications of the static QCD potential, in
particular the role of the linear term. The linearly rising term in the potential
between a static quark–antiquark pair implies that the energy keeps rising
linearly as one tries to pull the two constituents apart. Thus the quark and
the antiquark are confined in a strongly bound meson state. Similarly, as we
show later, also a combination of three quarks is bound, forming a baryon. The
phenomenon that only color neutral combinations like hadrons are observable
objects is one possible definition of confinement.

The physical mechanism which leads to the linearly rising term is the
formation of a flux tube between the two sources. In QED, where we have no
self-interaction of the gauge field, the field lines between a source and a sink
spread out in space. In QCD the strong self-interaction of the gluons prevents
this behavior, and the field is squeezed into a narrow tube or string producing
the linear rise. Direct experimental evidence for the linearly rising potential
is seen when the mass of hadrons is plotted as a function of their total spin
and a linear behavior is found (see, e.g., the discussion in [19]). Since for a
linearly rising potential the energy rises linearly with the angular momentum,
this experimental finding confirms the linear term in (3.62).

So far our discussion is based only on the static potential obtained from
pure gluodynamics. Certainly also the quarks, which we have not yet included
in our discussion, play an important role. In the full theory with dynamical
quarks, processes of particle–antiparticle creation and annihilation become
important. In particular if the quark and antiquark are pulled sufficiently far
apart, the energy becomes large enough to create a quark–antiquark pair,
which may recombine with the two initial constituents to form two mesons.
This phenomenon is called string breaking and can be studied on the lattice.

To summarize, we find that lattice QCD is very friendly to confinement.
This property can easily be proven in the strong coupling limit, but as we
shall see in Chap. 4, it is also relatively simple to extract the QCD potential
in a numerical calculation at weaker coupling.

3.5 Setting the scale with the static potential

In the lattice formalism the action is given in units of ! and all observables are
dimensionless. Only by relating them to physical quantities we may introduce
a scale parameter. An example of such a dimensionless quantity calculated
on the lattice is the product aM of the lattice spacing a and some mass M ,
which may be determined from an exponential decay of a correlation function
like in (1.21). Identifying M with a physical mass allows us to determine the
lattice constant a in physical units.

In this section we discuss another method for setting the scale, which is
based on the static quark potential V (r). This allows us to relate the lattice
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spacing a to the inverse gauge coupling β. We define a certain physical distance
r0, the so-called Sommer parameter [20], which is a characteristic length scale
tied to the static potential. In physical units this distance is r0 - 0.5 Fermi
(1 Fermi = 1 fm = 10−15 m). This distance allows us to determine the lattice
spacing a from V (r) simply by counting the number of lattice points between
r = 0 and r = r0. At the end of this section we will be able to discuss the true
continuum limit of pure lattice gauge theory.

3.5.1 Discussion of numerical data for the static potential

Let us begin our presentation with a discussion of numerical data for the
static potential. At the moment we assume that the data have already been
calculated since we introduce the actual techniques for such a calculation only
in Chap. 4. We assume that we have computed the expectation value 〈WC〉 for
a planar Wilson loop of size r× t, i.e., the contour C is an r× t rectangle. The
spatial distance r and the Euclidean time t are related to integer numbers n
and nt through the lattice spacing a,

r = na , t = nt a . (3.75)

According to (3.56) the vacuum expectation value of the Wilson loop is con-
nected to the static potential via (we here omit the exponentially suppressed
corrections shown explicitly in (3.56))

〈WC〉 = C exp (−t V (r)) = C exp (−nt aV (na)) . (3.76)

Since at this stage the lattice spacing a is still unknown, all we can extract from
our numerical data for 〈WC〉 are values for the product aV (an) at different
n. In practice this is done via a two-parameter fit of the data for different nt

(but fixed n) according to (3.76). The fit parameters are C and aV (an). This
procedure can be repeated for different values of n, and the result is a set of
numerical data for aV (an) as a function of n.

In Fig. 3.5 we show the results from a numerical calculation of aV (an) as
a function of n for two different values of β. The actual numerical results are
represented by the symbols which we connect with dotted lines to guide the
eye. Since the data are from a numerical simulation, they come with (small)
statistical errors represented by horizontal bars. Note that in the two plots
different scales are used for the axes. The vertical scales are chosen such that
the shape of the static potential is similar in the two plots.

The plots nicely show the linearly rising behavior at larger values of n
which we have already deduced from our strong coupling calculation. For
short distances the data points also display a curvature which comes from the
Coulomb part of the potential. This is more pronounced in the right-hand side
plot which is for a larger value of β. In particular at small distances the lattice
Coulomb potential deviates from the continuum form. The lattice Coulomb
potential is related to the lattice-free boson propagator [23] and is often used
to correct for this deviation [24–26].
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Fig. 3.5. Numerical data for the static quark potential computed with the Wilson
gauge action at two different couplings β. The symbols are the numerical data which
we connect to guide the eye. The dashed vertical lines are drawn at a distance that
corresponds to the Sommer parameter. The data are taken from [21, 22]

3.5.2 The Sommer parameter and the lattice spacing

We have already announced that we introduce the Sommer parameter as a way
to determine the lattice spacing a. Later in the book we discuss alternative
methods to determine a, e.g., by using the masses of hadrons. Although the
different methods provide values of a that differ slightly at a given gauge
coupling, in the continuum limit the final physical results should agree.

The Sommer parameter r0 is a certain distance related to the shape of
the static potential. Its physical value is r0 - 0.5 fm. Although we discuss
the precise definition of the distance r0 only below, we have already marked
its position in the two plots of Fig. 3.5 using dashed vertical lines. Thus, the
distance between n = 0 on the horizontal axis and the dashed line corresponds
to 0.5 fm. Note that the variable n on the horizontal axis is dimensionless – it
simply is the number of lattice spacings in the spatial direction of the contour
C. Thus, what is marked by the vertical dashed lines is the Sommer scale in
lattice units, i.e., r0/a. We will discuss below how to extract the ratio r0/a
from the numerical data for aV (an).

Once the Sommer scale r0/a is computed, it is easy to determine the lattice
spacing. When inspecting the two plots in Fig. 3.5, we find that the number
of lattice points between the origin (n = 0) and the vertical dashed line at
r0/a is different for the two values of β. In the left-hand side plot of Fig. 3.5,
corresponding to β = 5.95, we find about n = 4.9 lattice points to the left of
the dashed line. In the plot for β = 6.20 we find approximately n = 7.4 lattice
points left of the vertical line. Since in both cases the distance between n = 0
and the vertical line corresponds to 0.5 fm, we find for the lattice spacing a:
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a = 0.5 fm /4.9 ≈ 0.102 fm for β = 5.95 ,

a = 0.5 fm /7.4 ≈ 0.067 fm for β = 6.20 . (3.77)

We finally need to discuss how the Sommer scale r0 is defined [20]. The
Sommer scale is not based directly on the potential V (r), but instead on
the force F (r) = dV (r)/dr between the two static quarks.3 For sufficiently
heavy quarks, quark–antiquark bound states can be described by an effective
nonrelativistic Schrödinger equation and the force F (r) can be studied. From
comparing with experimental data for the bb and cc spectra one finds that

F (r0) r 2
0 = 1.65 corresponds to r0 - 0.5 fm . (3.78)

Thus, we need to calculate from our numerical data for V (r) the dimensionless
product F (r) r2 and determine the value r = r0 where this product assumes
the value 1.65. For an easy-to-digest presentation of this determination we
discuss the Sommer parameter directly for the potential as parameterized in
(3.62). We obtain for the force

F (r) =
d

dr
V (r) =

d

dr

(
A +

B

r
+ σr

)
= −B

r2
+ σ . (3.79)

Thus, for the parameterized potential the condition (3.78) reads

F (r0) r 2
0 = −B + σr 2

0 = 1.65 , (3.80)

which implies r0 =
√

(1.65 + B)/σ, or expressed in lattice units

r0

a
=

√
1.65 + B

σ a2
. (3.81)

The ratio r0/a is exactly what we have used in Fig. 3.5 and the subsequent
determination of a. The numbers B and σa2 can be determined from the fit4
of our data for aV (an) to (this is equation (3.62) for r = an)

aV (an) = Aa +
B

n
+ σa2 n , (3.82)

for different values of n. Thus, the determination of the lattice spacing can
be summarized as follows: Step 1: Determine B and σa2 from the numerical
data for aV (an). Step 2: Use (3.81) to calculate the dimensionless number
X = r0/a. Step 3: The lattice spacing is then given by a = (0.5/X) fm.

3This definition of F differs by a minus sign from the usual definition.
4We remark that such a fit already assumes that the potential has – at least

locally – the form (3.62). An alternative approach is to directly determine the force F
by discretizing the derivative d/dr on the lattice (see [20] for details). This approach
has the further advantage that one does not need to fit σa2 and B, a fit which is
dominated by large values of n where the signal to noise ratio of the data for aV (an)
becomes poor.
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In the discussion of Fig. 3.5 we have already addressed the fact that the
lattice spacing decreases when increasing β (see also (3.77)). In [22] the lattice
spacing a was determined for the Wilson action at several values of β and the
dependence of a on β was parametrized for 5.7 ≤ β ≤ 6.92 as

a = r0 exp
(
−1.6804 − 1.7331(β − 6) + 0.7849(β − 6)2 − 0.4428(β − 6)3

)
.

(3.83)
The form of the parametrization in (3.83) is inspired by the renormalization
group, an important concept which we briefly address now.

3.5.3 Renormalization group and the running coupling

Coupling constants like the gauge coupling g or a quark mass m as they en-
ter the action functional are usually called bare parameters. These are not
directly observable “physical” numbers. Only by computing observables such
as hadron masses, the string tension, or the Sommer parameter, and by iden-
tifying those with experimental values one can find out the values of the bare
parameters of the action in physical units.

Lattice actions may differ in various aspects. They may use different dis-
cretizations of derivatives or the lattice grid, which is usually taken to be
hypercubic, may vary in its structure. However, when removing the lattice
cutoff, i.e., in the limit a → 0, physical observables should agree with the ex-
perimental value and become independent of a. In general this will imply that
the bare parameters have a nontrivial dependence on the cutoff a, meaning
that they are functions g(a), m(a), etc. As we send a → 0 the values of the
bare parameters will have to be changed in order to keep physics constant.

This running of the bare parameters is addressed by the so-called renor-
malization group. To simplify the discussion of this idea we consider pure
gauge theory where we have only one bare coupling, the gauge coupling g(a).
Let P (g(a), a) be a physical observable which in the limit a → 0 obtains its
physical value P0,

lim
a→0

P (g(a), a) = P0 . (3.84)

Callan and Symanzik, following early suggestions for QED by Stückelberg, Pe-
terman, Gell-Mann, and Low, formulated the requirement of constant physics
in a differential equation:

dP (g, a)
d ln a

= 0 or, equivalently
(

∂

∂ ln a
+

∂g

∂ ln a

∂

∂g

)
P (g, a) = 0 . (3.85)

The equation relates to a semi-group of scale-changing transformations, hence
the name renormalization group equation. (Actually and more precisely, the
right-hand side of this equation is O

(
(a/ξ)2ln(a/ξ)

)
for a lattice system with

correlation length ξ.) The coefficient function of the second term is called the
β-function (not to be mixed up with our inverse gauge coupling),
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β(g) ≡ − ∂g

∂ ln a
, (3.86)

and determines, up to an integration constant, how the coupling g depends
on the cutoff a.

The β-function may be expanded in a power series around g = 0, with
coefficients determined by perturbation theory. For SU(N) and nf massless
quarks the result reads

β(g) = −β0g
3 − β1g

5 + O(g7) ,

β0 =
1

(4π)2

(
11
3

N − 2
3

nf

)
,

β1 =
1

(4π)4

(
34
3

N2 − 10
3

N nf − N2 − 1
N

nf

)
.

(3.87)

For pure gauge SU(3) we have to take N = 3 and nf = 0. These first two
coefficients of the expansion are universal, independent of the regularization
scheme. In general, however, the β-function will depend on the details of the
regularization.

The differential Eq. (3.86) with (3.87) can be solved, using separation of
variables, and one obtains

a(g) =
1
ΛL

(
β0 g2

)− β1
2β2

0 exp
(
− 1

2β0g2

) (
1 + O(g2)

)
. (3.88)

The integration constant ΛL is used to set the scale by fixing the value of g at
some a. Inverting the relation (3.88) one obtains the coupling g as a function
of the scale a, the so-called running coupling,

g(a)−2 = β0 ln (a−2Λ−2
L ) +

β1

β0
ln

(
ln (a−2Λ−2

L )
)
+O

(
1/ ln (a2Λ2

L)
)

. (3.89)

Changing a thus implies a corresponding change of g such that physical ob-
servables remain independent of the scale-fixing procedure. The value of ΛL

depends on the regularization scheme. Different continuum or lattice actions
have different values of ΛL; their ratios may be exactly related by a 1-loop
perturbative calculation, however.

In fact, the validity of the perturbative expansion (3.87) has to be checked.
We find that for shrinking lattice spacing the running coupling also decreases
(for nf < 11N/2). Vanishing lattice spacing corresponds to vanishing coupling
g since g = 0 is indeed a zero of the β-function. This behavior is called
asymptotic freedom. For honesty we have to point out that there are possible
nonperturbative contributions of the type O

(
exp(−1/g2)

)
(nonvanishing for

g > 0 but not contributing to the series expansion). It is generally expected
that these are not relevant for sufficiently small g. Also, the order of performing
the infinite volume limit and the continuum limit is an important issue, cf.
[27] and references therein.
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3.5.4 The true continuum limit

At the end of Chap. 1, we already briefly mentioned how the true continuum
limit of a lattice field theory can be taken. However, at that point we did not
have the prerequisites to address this limit in a proper way and promised a
detailed discussion later. For the case of pure gauge theory, we can now provide
this discussion: Since we have shown in (3.83) and (3.88), respectively, that
the lattice spacing a decreases with decreasing g (increasing β), we conclude
that we simply have to study the limit

β → ∞ (3.90)

to obtain the true continuum limit a → 0. There are, however, certain caveats
to be considered in this procedure. If one performs the limit (3.90), then the
physical volume of the box in which we study QCD is proportional to a4 and
thus shrinks to zero, unless we also increase the numbers of lattice points in
the spatial (N points) and temporal (NT points) directions of our lattice. In
an ideal world one would first perform the so-called thermodynamic limit

N → ∞ , NT → ∞ , (3.91)

and only after that step the continuum limit (3.90) would be taken. However,
since in a numerical calculation this is not feasible, one is reduced to calcu-
lating the physical observables for a few values of β, giving rise to different
values of a. The numbers of lattice points N,NT are always chosen such that
the physical extension

L = aN , T = aNT , (3.92)

of the box remains fixed for the different values of a. Studying the a-
dependence of the results at fixed physical volume allows one to analyze the
dependence on the scale a and to extrapolate the results to a → 0. The study
of the a-dependence is often referred to as scaling analysis. The extrapolation
to a = 0 can then be repeated for different physical sizes L, T which in the
end allows one to extrapolate the data to infinite physical volume.

3.6 Lattice gauge theory with other gauge groups

Although this book is dedicated to lattice QCD, where the gauge group is
SU(3), we also briefly discuss lattice gauge theory with other gauge groups, in
particular SU(N) and U(1). SU(2) is of interest since it is simpler than SU(3)
and is also a subgroup of SU(3), and it is therefore widely studied. Important
ideas, such as topological charge and instantons, which are solutions of the
classical equations of motion for the gauge field, can be formulated in SU(2).
The groups SU(N) with N ≥ 4 are of interest since in the continuum the limit
N → ∞ is a limit appealing for analytic studies. Thus, on the lattice one can
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analyze the N -dependence of observables. For general N the Wilson action
reads

SG[U ] =
β

N

∑

n∈Λ

∑

µ<ν

Re tr [1− Uµν(n)] , (3.93)

with β = 2N/g2. The plaquette Uµν(n) is the same ordered product (2.48) as
for SU(3). All observables which we have discussed so far, in particular Wilson
and Polyakov loops, can be taken over unchanged to general N .

The gauge group U(1) is interesting since it corresponds to QED. As an
abelian group it is simpler to implement, and a numerical simulation of this
case is a fairly easy exercise that can produce interesting results on a PC
within a few hours. The main difference to the non-abelian groups is the fact
that the elements of U(1) are not matrices but simply complex phases, i.e.,
we can write the link variables as Uµ(n) = exp (iAµ(n)), where the Aµ(n) are
real. This implies that the commutator of two link variables vanishes. Hence,
the quadratic term in the field strength vanishes and one finds Fµν(x) =
∂µAν(x) − ∂νAµ(x). No self-interaction terms emerge. The Wilson action for
U(1) is given by

SG[U ] = β
∑

n∈Λ

∑

µ<ν

Re (1 − Uµν(n)) . (3.94)

No trace over color degrees of freedom is necessary and the plaquette is simply
a product of complex numbers, Uµν(n) = Uµ(n)Uν(n + µ̂)Uµ(n + ν̂)∗ Uν(n)∗
(the asterisk denotes complex conjugation). The coupling β is related to the
coupling e of QED by β = 1/e2. The Polyakov loop and Wilson loop observ-
ables can again be used, but no trace is needed.

An interesting observation can be made when applying the strong cou-
pling (small-β) expansion to U(1) lattice gauge theory. One still finds a
linearly rising term in the potential, indicating confinement. On the other
hand this theory is expected to describe QED, which does not show con-
finement. The solution of this riddle is a phase transition in the U(1) lat-
tice gauge theory. At a critical value of βcrit ≈ 1.01 the theory changes
its behavior such that above βcrit the linearly rising term of the potential
vanishes and only the Coulomb potential term remains. For SU(N) lattice
gauge theories it is generally believed that no such transition occurs and
the theory remains confining for all β. However, for an alternative scenario
see [28].
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4

Numerical simulation of pure gauge theory

A basic simulation of pure SU(3) gauge theory is something that by now can
be done already on a modern PC and certainly is a pedagogically valuable
exercise. This section provides the techniques necessary for such a calculation.
It also serves as an introduction to Monte Carlo simulations, although for the
sake of having an easy-to-follow presentation, we concentrate on the simplest
algorithms.

The vacuum expectation value of an observable in the quantized Euclidean
gauge field theory on a lattice is formally given by the functional integral (cf.
(3.1) and (3.2) in Chap. 3)

〈O〉 =
1
Z

∫
D[U ] e−SG[U ] O[U ] with Z =

∫
D[U ] e−SG[U ] . (4.1)

However, this expression cannot be evaluated analytically, except for very
small lattices. A Monte Carlo simulation approximates the integral by an
average of the observable evaluated on N sample gauge field configurations
Un, distributed with probability ∝ exp (−S[Un]). The sum1

〈O〉 ≈ 1
N

∑

Un with
probability
∝ e−S[Un]

O[Un] (4.2)

is computed for sufficiently many configurations generated by Monte Carlo
algorithms. In this chapter we discuss how such a sequence of configurations
Un can be obtained as a so-called Markov chain. Usually, subsequently pro-
duced gauge configurations are not completely uncorrelated and we discuss
methods how to deal with this problem and address the statistical analysis
of the data. The observables we will consider prominently in this chapter are
Wilson and Polyakov loops. At the end of this chapter the reader will be able
to compute numerically the static potential with error bars.

1For the rest of this chapter we omit the subscript G and denote the gauge action
by S[U ].

Gattringer, C., Lang, C.B.: Numerical Simulation of Pure Gauge Theory. Lect. Notes
Phys. 788, 73–101 (2010)
DOI 10.1007/978-3-642-01850-3 4 c© Springer-Verlag Berlin Heidelberg 2010
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4.1 The Monte Carlo method

4.1.1 Simple sampling and importance sampling

The Euclidean path integral for a finite lattice is a high-dimensional integral
over the field variables: Scalar fields or fermions living on the sites and gauge
fields attached to the links connecting neighboring sites.

Let us for a moment consider a similar but simpler situation. A 4D version
of the Ising spin system of statistical physics has on its sites spin variables
which may assume two values: +1 or −1 (compare (1.92), (1.93), and (1.94)).
This system is a model of ferromagnetism where the variables represent mi-
croscopic magnets pointing up or down. One also may consider it as a simplifi-
cation of a scalar quantum field theory where the integral over the continuous
variable at each site is replaced by the sum over two values. A lattice with N4

sites has N4 such spin variables. Counting all possible combinations of values
±1 we have 2N4

spin configurations. For a moderately large lattice we may
have N = 16 and therefore 265536 ≈ 1019728 possible spin configurations. The
exact evaluation of (1.94) corresponds to summing over all these configura-
tions, clearly an impossible task. We have to find a way to provide an estimate
for this sum.

Probability theory tells us that we may approximate an integral over a
function by averaging the function values f(xn) at values xn randomly chosen
according to the uniform distribution ρu(xn) = 1/(b − a):

1
b − a

∫ b

a
dx f(x) = 〈f〉ρu = lim

N→∞

1
N

N∑

n=1

f(xn) . (4.3)

The method replaces the exact mean by a sample mean, just like in opinion
polls. Like in those polls, in actual calculations one is confined to a subsample
and a finite number N . One can prove that the uncertainty in that estimate
of the correct mean behaves like O

(
1/
√

N
)
. Actually, even that is just a

probabilistic statement, since this error has itself a statistical error and so
on. However dubious this may seem at first sight, in actual calculations the
method works amazingly well.

Monte Carlo sampling is easily applicable to higher dimensional integrals.
All that changes is that now xn denotes a vector of random variables and one
chooses random points in this multi-dimensional space. In the usual numerical
quadrature methods the effort grows exponentially with the requested accu-
racy. For the Monte Carlo integration the estimated error is always ∝ 1/

√
N :

In order to improve the accuracy by a factor of 2 one has to take four times
as many random points. Comparisons show that the Monte Carlo method
becomes more efficient than quadrature for more than three dimensions.

However, in our path integral we have to take into account the Boltzmann
factor exp (−S). Depending on the action S it will give different importance
to different field configurations. When summing over the configurations it is
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therefore more important to consider the configurations with larger weight
than those with smaller weight. The central idea of the so-called importance
sampling Monte Carlo method is to approximate the huge sum by a com-
paratively small subset of configurations, which are sampled according to the
weight factor.

The expectation value of some function f(x) with regard to a probability
distribution with density ρ(x) is given by

〈f〉ρ =
∫ b

a dx ρ(x) f(x)
∫ b

a dx ρ(x)
. (4.4)

In the importance sampling Monte Carlo integration this expectation value is
approximated by an average over N values,

〈f〉ρ = lim
N→∞

1
N

N∑

n=1

f(xn) , (4.5)

for xn ∈ (a, b) each randomly sampled with the normalized probability density

dP (x) =
ρ(x)dx

∫ b
a dx ρ(x)

. (4.6)

Our path integral is of the form (4.4) and thus suitable for importance sam-
pling. We may therefore write the expectation of an operator O as

〈O〉 = lim
N→∞

1
N

N∑

n=1

O[Un] , (4.7)

with each of the Un sampled according to the probability distribution density

dP (U) =
e−S[U ] D[U ]∫
D[U ] e−S[U ]

, (4.8)

the so-called Gibbs measure. The gauge field configurations Un are our random
variables. We approximate the integral using a sample of N such configura-
tions. In actual calculations this number may vary between a few hundreds
up to several millions, depending on the available computer resources and the
complexity of the problem. The statistical error of the result will be propor-
tional to 1/

√
N and the exact value will be obtained for N → ∞. The results

are for finite size lattices, however. Control of the statistical error belongs to
the central issues of Monte Carlo calculations.

4.1.2 Markov chains

How do we find field configurations Un following the probability distribution
(4.8)? The idea is to start from some arbitrary configuration and then to
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Fig. 4.1. Schematic sketch of a Markov chain in the space of all configurations

construct a stochastic sequence of configurations that eventually follows an
equilibrium distribution P (U). This is done with a so-called homogeneous
Markov chain or Markov process

U0 −→ U1 −→ U2 −→ . . . . (4.9)

In this Markov chain configurations Un are generated subsequently. The index
n labels the configurations in the order they appear in the chain; it is often
referred to as computer time, not to be mistaken with the Euclidean time of
the 4D space–time. The change of a field configuration to a new one is called
an update or a Monte Carlo step.

In Fig. 4.1 we show a schematic sketch of a Markov chain. The boundary
delimits the space of all configurations. The dots represent configurations vis-
ited by our Markov chain and we connect them with straight lines to indicate
that they are visited subsequently. The Markov chain in the figure starts in the
upper left corner and then quickly moves toward the center of the blob, where
we find a large density of dots. This corresponds to a region of configurations
with large Boltzmann factor exp (−S) and thus with high probability. The
Markov process is constructed such that it visits configurations with larger
probabilities more often. A Markov process is characterized by a conditional
transition probability (read: probability to get U ′ if starting from U)

P (Un = U ′|Un−1 = U) = T (U ′|U) . (4.10)

This probability depends only on the configurations U and U ′ but not on the
index n. The transition probabilities T (U ′|U) obey

0 ≤ T (U ′|U) ≤ 1 ,
∑

U ′

T (U ′|U) = 1 . (4.11)

The inequality simply delimits the range of a probability. The sum states
that the total probability to jump from some configuration U to any target
configuration U ′ is equal to 1 (note that this includes also the case U ′ = U).

Let us now discuss an important restriction for T (U ′|U). Once it is in
equilibrium, our Markov process cannot have sinks or sources of probability.
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Thus the probability to hop into a configuration U ′ at the step Un−1 → Un

has to be equal to the probability for hopping out of U ′ at this step. The
corresponding balance equation reads as

∑

U

T (U ′|U)P (U) !=
∑

U

T (U |U ′)P (U ′) . (4.12)

On the left-hand side we sum the transition probability T (U ′|U) leading into
the final configuration U ′ over all starting configurations U , weighted by the
probability P (U) that the system actually is in the configuration U . This
expression gives the total probability to end up in U ′ and has to equal the
probability to hop out of U ′, which we compute on the right-hand side. It is
given by the probability P (U ′) of finding the system in the configuration U ′

times the sum of the transition probability T (U |U ′) over all final configura-
tions U the system could jump into. Note that on both sides we also included
the case where U ′ = U , i.e., the case without actual transition.

Before we discuss a solution of the balance equation (4.12), let us note
an important property. The sum on the right-hand side can be calculated
explicitly by using the normalization property (4.11). We find

∑

U

T (U ′|U)P (U) = P (U ′) , (4.13)

showing that the equilibrium distribution P (U) is a fixed point of the Markov
process. Once the equilibrium distribution is obtained, the system stays there
upon applying T . Starting the process from an arbitrary start configuration
U0 with initial distribution P (0)(U) = δ(U − U0), one eventually obtains the
equilibrium distribution P (U) by applying the transition matrix iteratively:

P (0) T→ P (1) T→ P (2) T→ . . .
T→ P (= equilibrium distribution) .

(4.14)
For an elementary proof of this property see, e.g., [1].

Let us address an important point. For obtaining correct results, the
Markov chain must be able to access all configurations. In other words, it
must be possible to reach all points inside the blob of Fig. 4.1 in a finite num-
ber of steps. If the transition matrix T (U ′|U) is strictly positive for all pairs
U,U ′, then the process is aperiodic and every configuration can be eventu-
ally reached. This property is called strong ergodicity. In realistic simulations
ergodicity and the related problem of relaxation are important questions. In
particular, if there are topologically different sectors in configuration space,
some Monte Carlo updating algorithms may have problems connecting them.

In an actual calculation one starts to calculate observables according to
(4.7) only after a sufficient number of equilibrating Monte Carlo steps. The
subtle question is when one can assume that the distribution of the consid-
ered configurations is already close enough to the equilibrium distribution.
This decision is usually based on the measurement of certain observables and
correlations. We will discuss this issue in more detail later in this chapter.
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We now present a sufficient condition for a solution of the balance equation
(4.12). On both sides we have sums over all configurations U , and these sums
have to be equal. A solution can be obtained, by requiring that the equality
holds term-wise,

T (U ′|U)P (U) = T (U |U ′)P (U ′) . (4.15)

This sufficient condition is known as the detailed balance condition. Although
other solutions are known, most algorithms use the detailed balance condition.
In the next section we will discuss the “mother of all Monte Carlo algorithms”
based on (4.15), the Metropolis algorithm.

4.1.3 Metropolis algorithm – general idea

The Metropolis algorithm [2], which advances the Markov chain from a con-
figuration Un−1 to some new configuration Un, consists of the following steps
(we use P (U) ∝ exp(−S[U ])):

Step 1: Choose some candidate configuration U ′ according to some a priori
selection probability T0(U ′|U), where U = Un−1.

Step 2: Accept the candidate configuration U ′ as the new configuration Un

with the acceptance probability

TA(U ′|U) = min
(

1,
T0(U |U ′) exp (−S[U ′])
T0(U ′|U) exp (−S[U ])

)
. (4.16)

If a suggested change is not accepted, the unchanged configuration is
considered again in the Markov chain and included in the measurements
like the others.

Step 3: Repeat these steps from the beginning.

It is straightforward to see that the total transition probability T = T0 TA

fulfills the detailed balance condition

T (U ′|U) exp (−S[U ])

= T0(U ′|U) min
(

1,
T0(U |U ′) exp (−S[U ′])
T0(U ′|U) exp (−S[U ])

)
exp (−S[U ])

= min (T0(U ′|U) exp (−S[U ]) , T0(U |U ′) exp (−S[U ′]))

= T (U |U ′) exp (−S[U ′])

(4.17)

due to the positivity of all factors and the symmetry of the min operation. In
many cases one uses a symmetric selection probability which obeys

T0(U |U ′) = T0(U ′|U) . (4.18)

In this case (4.16) simplifies to

TA(U ′|U) = min (1, exp (−∆S)) with ∆S = S[U ′] − S[U ] . (4.19)
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In particular for symmetric T0, the information necessary to decide on accep-
tance or rejection comes only from the change of the action ∆S with regard
to the change of the configuration. If this change is local, e.g., just involves a
single link variable Uµ(n), then ∆S may be determined from the field values
in the local neighborhood.

4.1.4 Metropolis algorithm for Wilson’s gauge action

Let us make the idea of the Metropolis algorithm more transparent by
discussing its application in the SU(N) Wilson gauge action (2.49) in four
dimensions. Starting from some configuration U , our candidate configu-
ration U ′ for the Metropolis update differs from the configuration U by
the value of only a single link variable Uµ(n)′. In four dimensions this
link is shared by six plaquettes, and only these six plaquettes are affected
when changing Uµ(n) → Uµ(n)′. Their local contribution to the action is
(compare (3.93))

S[Uµ(n)′]loc =
β

N

6∑

i=1

Re tr [1− Uµ(n)′ Pi] =
β

N
Re tr [61− Uµ(n)′ A] ,

with A =
6∑

i=1

Pi =
∑

ν &=µ

(Uν(n+µ̂)U−µ(n+µ̂+ν̂)U−ν(n+ν̂) (4.20)

+ U−ν(n+µ̂)U−µ(n+µ̂−ν̂)Uν(n−ν̂)) .

Here the Pi are products of the other three gauge link variables that build up
the plaquettes together with Uµ(n)′. These products are called staples and we
have written explicitly the sum A over all staples.

For the change of the action we obtain

∆S = S[Uµ(n)′]loc − S[Uµ(n)]loc = − β

N
Re tr [(Uµ(n)′ − Uµ(n)) A] , (4.21)

where A is not affected by the change of Uµ(n).
An important part of the algorithm is the choice of the candidate link

Uµ(n)′. It should be an element of SU(N) not too far away from the old link
Uµ(n), such that the average acceptance probability (4.16) for the candidate
does not become too small. A standard technique is to use

Uµ(n)′ = X Uµ(n) , (4.22)

where X is a random element of the gauge group SU(N) in the vicinity of 1.
To achieve a symmetric selection probability T0, X and X−1 have to be chosen
with equal probability. How such matrices X are constructed in practice will
be discussed in Sect. 4.2.
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Based on equations (4.20), (4.21), and (4.22), a realization of the Metropo-
lis algorithm with single link variable updates and symmetric selection prob-
ability T0 may be briefly summarized:

Step 1: Given some gauge field configuration, choose a site n and direction
µ and a candidate value Uµ(n)′ according to some symmetric selection
probability T0, using, e.g., (4.22).

Step 2: Compute the sum over the staples and from this the change of the
action ∆S according to (4.21). Compute a random number r uniformly
distributed in the interval [0, 1). Accept the new variable Uµ(n)′ if r ≤
exp(−∆S) and reject it otherwise.

Step 3: Repeat these steps from the beginning.

We point out that the change in Step 2 is always accepted if the action de-
creases or remains invariant, i.e., exp(−∆S) ≥ 1. This alone would lead to
a minimum of the action in configuration space, corresponding to a solution
of the classical field equations. However, due to the random variable r also
configurations with increased action will be accepted every now and then.
One could say that this feature reproduces the quantum fluctuations of the
system.

The order in which one visits the links (n, µ) to update the corresponding
link variables Uµ(n) can be chosen at one’s discretion. However, some imple-
mentations prefer a certain order and visit all lattice points systematically,
e.g., to utilize vector computation capabilities of the computer.

Furthermore, it is computationally economic to repeat the updating step a
few times for the visited variable, since the computation of the sum of staples
A is costly. Thus, once A is calculated, one offers the system candidate links
Uµ(n)′ repeatedly and accepts them according to Step 2. This modification is
called multi-hit Metropolis algorithm. The number of candidate links can be
tuned for efficiency. Theoretically, the infinite repetition leads to a method
equivalent to the heat bath algorithm which we discuss in Sect. 4.3.

4.2 Implementation of Monte Carlo algorithms for SU(3)

In the last section we have presented the idea of the single link Metropolis
update as a first approach to Monte Carlo algorithms. However, so far all
the details of an actual implementation have been left out. These details, in
particular the representation of the variables, boundary conditions, generation
of a candidate link, and the generation of random numbers, will be provided
in this section. Once we have presented these tools, we will be able to discuss
two more Monte Carlo algorithms, namely the heat bath and overrelaxation
methods.

Part of the material in this section is discussed for gauge groups U(1) and
SU(2). The abelian group U(1) is a simple do-it-yourself example and the
update of SU(2) subgroups is a building block for updating SU(3).
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4.2.1 Representation of the link variables

We have already seen in the discussion of the Metropolis algorithm that matrix
multiplication is the central operation of the update (compare (4.20), (4.21),
and (4.22)). For this reason it is important to find a suitable and efficient
representation for the link variables.

The defining representations of the gauge field variables are complex num-
bers for gauge group U(1), complex 2×2 matrices for SU(2), and complex 3×3
matrices for SU(3). However, due to the unitarity of the group elements there
are further restrictions to be obeyed. The minimal number of parameters for
the three groups is equal to the number of generators, 1, 3, and 8. Although
one can think of representations of group elements that have just these mini-
mal sets of parameters, in practical calculations it is often more convenient to
use a redundant representation. This leads to faster evaluation of the multi-
plication of group elements. This operation is the most time-consuming part
of the calculation, because it has to be done so frequently. For U(1) one uses
a complex number z with unit modulus |z| = 1. This implies that two real
numbers instead of a single phase have to be stored.

For SU(2) it is convenient to store the first row (a, b) of the matrix

U =
(

a b
−b∗ a∗

)
with |a|2 + |b|2 = 1 . (4.23)

This corresponds to storing two complex numbers (four real numbers instead
of the minimum of three). With a = x0+ix4 and b = x3+ix2 this is equivalent
to using the vector x = (x0, x) of four real coefficients in the representation

U = x0 1 + ix · σ with det[U ] = |x|2 = x2
0 + |x|2 =

3∑

i=0

x2
i = 1 , (4.24)

where σ denotes the vector of the three Pauli matrices (see (A.8)).
The group elements for SU(3) may be represented either by the complete

complex matrix (9 complex numbers = 18 real numbers instead of the mini-
mum of 8) or by the first two rows, corresponding to the complex 3 vectors
u and v (6 complex numbers = 12 real numbers). One has to restrict these
vectors to unit length, and they have to be orthogonal to each other:

|u|2 = u∗ · u = |u1|2 + |u2|2 + |u3|2 = 1 ,

|v|2 = v∗ · v = |v1|2 + |v2|2 + |v3|2 = 1 ,

(u, v) = u∗ · v = u∗
1 v1 + u∗

2 v2 + u∗
3 v3 = 0 .

(4.25)

Due to the properties of SU(3) matrices, the third row of the matrix can be
reconstructed from the first two rows:

U =




u
v

u∗ × v∗



 . (4.26)



82 4 Numerical simulation of pure gauge theory

Thus in principle it is sufficient to store only two rows. However, due to the
abundance of disc space and memory, nowadays mainly redundant represen-
tations of the group elements are used. Within the computer program the
gauge field is then an array with indices for the space and time positions of
the lattice sites and an index indicating the direction of the link variable.
For non-abelian theories there are also color indices depending on the type of
representation used (e.g., two if the matrix form is used).

Whatever representation one chooses, because of the accumulation of
rounding errors in the multiplications of the group elements, the matrices have
to be projected to unitarity regularly. The period depends on the number of
digits chosen and has to be decided based on observation. Re-unitarization
is done for U(1) by dividing by the norm. For SU(2) one normalizes the
first row and then (if necessary in the chosen representation) reconstructs
the second from the first. Equivalently, for SU(3) one follows essentially the
well-known Gram–Schmidt method for building orthonormal basis elements
in vector spaces. The first row is normalized, the second constructed from the
current values orthogonalized to the first row,

unew = u/|u| ,
vnew = v′/|v′| where v′ = v − unew (v · u∗

new) ,
(4.27)

and the third row is constructed from the first two rows as given in (4.26).

4.2.2 Boundary conditions

Since a numerical simulation works on a finite lattice, boundary conditions
have to be implemented. For gauge fields one usually uses periodic boundary
conditions (compare (A.27) for our definition of the lattice)

Uµ(N,n2, n3, n4) = Uµ(0, n2, n3, n4) , Uµ(n1, N, n3, n4) = Uµ(n1, 0, n3, n4) ,
Uµ(n1, n2, N, n4) = Uµ(n1, n2, 0, n4) , Uµ(n1, n2, n3, NT ) = Uµ(n1, n2, n3, 0) .

(4.28)
For fermions one often chooses boundary conditions anti-periodic in one di-
rection as will be discussed in Chap. 5. The boundary conditions define the
topology of the underlying manifold. Periodic and anti-periodic boundary con-
ditions correspond to a torus in four dimensions – each direction behaves like
a circle. Choosing toroidal boundary conditions (as opposed to, e.g., Dirichlet
boundary conditions) has the advantage of preserving the discrete transla-
tional symmetry of the lattice. Other boundary conditions and other lattice
discretizations are possible and have been studied, but the majority of cal-
culations are done with hypercubic lattices and (anti-) periodic boundary
conditions.

When calculating the change of the action ∆S for a Monte Carlo step, one
needs the addresses of nearest neighbors in the four space–time directions.
This may seem trivial, but in actual calculations it takes some computer time.
For this reason various acceleration techniques have been developed. Most of
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them use pre-calculated index arrays to implement neighbor calculations and
boundary conditions at the same time.

4.2.3 Generating a candidate link for the Metropolis update

We still need to address how we generate the candidate link for the Metropolis
algorithm presented in the last section.

In the Metropolis algorithm one has to suggest a candidate link variable
Uµ(n)′ in the vicinity of the old value Uµ(n). As already stated in (4.22) this
can be done as

Uµ(n)′ = XUµ(n) , (4.29)

where X is a randomly chosen element of the gauge group close to the unit ele-
ment. The acceptance rate can be adjusted to reasonable values by tuning the
spread of the matrices X around unity. A high acceptance rate may seem de-
sirable but usually means too small changes and slow motion in configuration
space. Smaller acceptance is costly because many candidate configurations
are generated but not accepted. As a rule of thumb an acceptance rate of
0.5 is reasonable, such that in average, one out of two suggested candidate
configurations is accepted in the Monte Carlo step.

Choosing candidates for the Metropolis step is simple for U(1) where one
may choose X = eiϕ with ϕ ∈ (−ε, ε) randomly chosen with uniform distribu-
tion. Then ε may be tuned for good acceptance. However, this requires compu-
tation of the sine function and one wants to avoid costly computations in the
heart of the program. Thus it is more efficient to take X = (1+ iϕ)/

√
1 + ϕ2

instead, as long as ε is not too large (less than 1). Further possibilities can be
explored. One sees that this topic moves from science to art [3].

For the gauge groups SU(2) and SU(3) the determination of random group
elements is more costly. One may use various methods to suggest elements
around unity. For SU(2) one may choose four random numbers ri uniformly
distributed in (−1/2, 1/2). The SU(2) matrix X then is constructed following
(4.24) with x0 and x given by

x = ε r/|r| , x0 = sign(r0)
√

1 − ε2 , (4.30)

where ε is again the parameter that controls the spread of X around 1.
For SU(3), updating matrices X can be constructed from such SU(2) ma-

trices embedded in 3 × 3 matrices according to

R =




r11 r12 0
r21 r22 0
0 0 1



 , S =




s11 0 s12

0 1 0
s21 0 s22



 , T =




1 0 0
0 t11 t12
0 t21 t22



 . (4.31)

A possible choice for X is then given by the product

X = R S T . (4.32)
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Since the matrices R, S, T are close to 1, so is the product X.
In order to preserve the symmetry of the a priori selection probability

T0(U ′|U), X and X−1 = X† should be chosen with equal probability. A
simple way of doing this is to construct a set of random SU(3) matrices close
to unity (e.g., by using (4.32)) and to include in this set also the hermitian
conjugate of each matrix. The matrices X used to build the candidate link
according to (4.29) are chosen randomly out of this set. The set is rebuilt with
new group elements from time to time.

4.2.4 A few remarks on random numbers

The central step of the Monte Carlo procedure needs random numbers. In the
computer programs these are so-called pseudo random numbers, generated
reproducibly by algorithms. The statistical properties of the pseudo random
numbers are very close to those of real random numbers. Typical Monte Carlo
runs may need O(1012) random numbers. Therefore, utmost care has to be
taken in selecting a proper generator. Standard implementations of random
number generators are often not reliable enough and produce subtly corre-
lated numbers with too small periods. High-quality generators use the so-
called lagged Fibonacci method and there are generators with extremely long
guaranteed periods O(10171) [4].

Pseudo random numbers are usually generated according to a uniform dis-
tribution in the interval [0, 1). There exists a variety of algorithms to generate
from these other distributions [3, 5]. This may be costly in terms of computer
time, and finding efficient and “well-behaved” generators (in the statistical
sense) is an important task of the Monte Carlo approach. Indeed, the whole
gauge field configuration may be considered a vector of random numbers fol-
lowing a distribution: the Boltzmann distribution.

Any generator has to be initialized. In case one continues a long run one
should also store the final state of the generator in order to be able to restart
it at that position.

4.3 More Monte Carlo algorithms

Meanwhile there exists a collection of updating algorithms. If, such as in sim-
ple Metropolis, the changes of a Monte Carlo step affect only a few variables
locally, one calls this a local algorithm. Unfortunately, local algorithms al-
low for only very small steps in the Markov chain and therefore are not very
efficient. One has to perform many updating steps in order to obtain uncor-
related configurations. The situation is better for nonlocal algorithms, where
large subsets of field variables are changed at once. Whereas for spin models
and scalar field theories there are excellent nonlocal (e.g., cluster) algorithms,
this is not the case for gauge fields, where, up to now, no efficient nonlocal
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updating method is known. The following algorithms have been applied to
gauge fields:

Heat bath: Equivalent to an iterated Metropolis updating, optimizing the
local acceptance rate [6].

Overrelaxation: A sometimes very efficient method to improve the step size
in the Markov chain, exploiting symmetry properties of the action [7, 8].
To obtain ergodicity it has to be combined with other algorithms.

Microcanonical: Reformulates the updating in terms of a deterministic, dis-
crete Hamiltonian evolution using a doubled number of variables: (U,Π).
A variant method introduces a microcanonical demon [9].

Hybrid Monte Carlo: Combines a number of microcanonical updates (a
trajectory) with a final Monte Carlo acceptance step [10].

Langevin: Uses the stochastic differential equation for the construction of
configurations [11–13]; equivalence to the microcanonical and the hybrid
method may be demonstrated (in certain limits).

Different updating algorithms may have different performance in terms of the
required computational effort and the resulting step size in the Markov chain.

Here we present in more detail the heat bath algorithm and overrelaxation.
In Sect. 4.4 we will outline the steps necessary for a simulation of pure gauge
theory based on these algorithms.

4.3.1 The heat bath algorithm

In the heat bath method one combines steps 1 and 2 of the single link Metropo-
lis update into a single step and chooses the new value Uµ(n)′ according to
the local probability distribution defined by the surrounding staples,

dP (U) = dU exp
(

β

N
Re tr [U A]

)
. (4.33)

The sum of staples A is calculated according to (4.20) and all links, except
for U = Uµ(n)′, are held fixed and therefore A is constant. Note that dU
denotes the Haar integration measure of the gauge group. This may be com-
putationally quite demanding. It has the advantage, however, that the link
variable always changes. The implementation depends on the details of the
gauge group and of the action.

We first present in some detail the heat bath method for the gauge group
SU(2) with Wilson action and generalize the method to SU(3) in the next
paragraph. For the case of SU(2) there exists an efficient method to find a
new link element. This group is special, since a sum of two SU(2) elements
is proportional to another SU(2) matrix. We use this property and write the
sum of staples A from (4.21) in the form

A = aV with a =
√

det[A] , (4.34)
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where it can be shown that det[A] ≥ 0. If det[A] vanishes one chooses a random
SU(2) matrix for U . Otherwise we find that V = A/a is a properly normalized
SU(2) matrix. Inserting (4.34) in our probability distribution (4.33), we obtain
(for SU(2) we have set N = 2 in this equation)

dP (U) = dU exp
(

1
2

a β Re tr [U V ]
)

. (4.35)

The Haar measure dU is invariant under transformations of the origin in group
space (cf. Chap. 3) and we may also write it as d(U V ). If we define a matrix
X by the product X = UV , the local probability distribution for X is

dP (X) = dX exp
(

1
2
a β Re tr [X]

)
. (4.36)

If we generate a matrix X distributed accordingly, the candidate link is ob-
tained by

Uµ(n)′ = U = X V † = X A† 1
a

. (4.37)

We therefore have reduced the problem to generating matrices X dis-
tributed according to (4.36). The Haar measure in that equation may be
written in terms of the real parameters used in the representation (4.24) of
the group elements. For X in representation (4.24) with x ∈ R4, |x| = 1, the
Haar measure reads

dX =
1
π2

d4x δ
(
x2

0 + |x|2 − 1
)

(4.38)

=
1
π2

d4x
θ(1 − x2

0)
2
√

1 − x2
0

(
δ

(
|x| −

√
1 − x2

0

)
+ δ

(
|x| +

√
1 − x2

0

))
,

where in the second line we have used a well-known formula for the Dirac
delta of functions. We rewrite the volume element as

d4x = d|x| |x|2 d2Ω dx0 , (4.39)

where d2Ω denotes the spherical angle element in the integration over the
3-vector x. We can use the Dirac deltas to remove the |x| integration. Only
the first Dirac delta in (4.38) contributes and from now on |x| is frozen to√

1 − x2
0. The Haar measure assumes the form

dX =
1
π2

d2Ω dx0
(1 − x2

0) θ(1 − x2
0)

2
√

1 − x2
0

=
1

2π2
d2Ω dx0

√
1 − x2

0 θ(1 − x2
0) .

(4.40)
Note that in the matrix representation chosen for X we have |x0| ≤ 1 and
therefore we could have omitted the step function θ. Due to tr[X] = 2x0, we
end up with the distribution for X in the form (using d2Ω = dcosϑ dϕ)
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dP (X) =
1

2π2
d cosϑ dϕ dx0

√
1 − x2

0 ea β x0 , (4.41)

with x0 ∈ [−1, 1], cosϑ ∈ [−1, 1], and ϕ ∈ [0, 2π). In order to find a random
matrix X we have to determine random variables x0, ϑ, and ϕ according to
this distribution. Since the distribution for the three variables factorizes, we
can generate them independently:

Random variable x0: The task is to find values x0 distributed according to√
1 − x2

0 ea β x0 . Following [14, 15] we introduce a variable λ

x0 = 1 − 2λ2 with x0 ∈ [−1, 1] ⇒ (4.42)

dx0

√
1 − x2

0 ea β x0 ∝ dλ λ2
√

1 − λ2 e−2 a β λ2
with λ ∈ [0, 1] .

After this transformation we need to generate λ with the polynomially
modified Gaussian distribution density

p1(λ) = λ2 e−2 a β λ2
(4.43)

and accept it with an accept/reject step using the square root function

p2(λ) =
√

1 − λ2 . (4.44)

Algorithms to compute random numbers with Gaussian distributions are
well known [3, 5]. We proceed as follows [15]:

Step 1: One starts with a triplet of random numbers ri, i = 1, 2, 3
uniformly distributed in (0, 1] (the value 0 has to be avoided; since usual
random number generators cover the interval [0, 1) one just takes (1− ri)
instead). Then

λ2 = − 1
2 a β

(
ln(r1) + cos2 (2π r2) ln(r3)

)
(4.45)

follows the required distribution.
Step 2: We correct for the factor p2(λ) and thus accept only those

values of λ which obey

r ≤
√

1 − λ2 or, better r2 ≤ 1 − λ2 , (4.46)

where r is a random variable uniformly distributed in [0, 1). The accepted
values give x0 = 1 − 2λ2 following the requested distribution.

Random variable |x|: Actually this random variable was removed when we
integrated it out using the Dirac delta of (4.38). However, in this step the
length was frozen to |x| =

√
1 − x2

0 and we now can compute it from the
x0 determined in the last step.

Random variables cosϑ and ϕ: The angular variables correspond to the
direction of x and are uniformly distributed. A possible method is to
choose three random numbers r1, r2, and r3 uniformly distributed in
[−1, 1) and to accept them when r2

1+r2
2+r2

3 ≤ 1. This 3-vector is then nor-
malized to length |x| =

√
1 − x2

0.
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After these steps we end up with a vector (x0,x) and from that we can
compute the matrix X using representation (4.24). We summarize the steps
for updating an SU(2) link variable with the heat bath algorithm:

1. Find the sum of staples A, compute a =
√

det[A], and set V = A/a.
2. Find a group element X according to distribution (4.41) as discussed

above.
3. The new link variable is U = X V †.

There is no heat bath algorithm which directly produces SU(3) link vari-
ables. However, one can apply a pseudo heat bath method by iterating the
heat bath for the SU(2) subgroups of SU(3) [16]. Two such SU(2) subgroups
would be sufficient to cover the whole group space. However, for symmetry
reasons one chooses three such groups as given in (4.31). Each of the three
matrices is determined with the heat bath for SU(2) as discussed.

For this aim let us consider again (4.33). Let us assume that we want to
modify the link variable U by left multiplication with, e.g., the first matrix
R of (4.31). The exponent in the local Boltzmann weight (4.33) then would
read (now N = 3 since this is for SU(3))

β

3
Re tr [R U A] . (4.47)

Denoting W = U A the trace contains the terms

tr [R W ] = r11 w11 + r12 w21 + r21 w12 + r22 w22 + terms without rij . (4.48)

A heat bath algorithm for R is therefore influenced only by those terms in W
that multiply the four nontrivial terms in R, the sub-block of W corresponding
to the relevant sub-matrix of R. We find that W plays the role of A in (4.33)
in the discussion of the SU(2) heat bath algorithm. It is no group element
of SU(2) but proportional to 1. Thus one can proceed like before finding the
elements of R in the “heat bath” of W .

We multiply the resulting R with W to obtain a new W = R UA, which
now provides the SU(2) heat bath factors for S. The resulting S again multi-
plies W and leads to T . The three SU(2) heat bath factor matrices give the
new value of the link variable:

U ⇒ U ′ = T S R U . (4.49)

This pseudo heat bath update for the SU(2) subgroups may also be combined
with overrelaxation steps as discussed in the next section.

4.3.2 Overrelaxation

This method tries to change the variables as much as possible in order to
speed up the motion through configuration space. One utilizes the property
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that in the Metropolis algorithm new configurations are always accepted if
they do not change the action. Like for the heat bath algorithm the starting
point is the probability distribution (4.33) of a single link variable Uµ(n) = U
in the background of its neighbors which we hold fixed with the sum of staples
A calculated according to (4.21). The idea of the overrelaxation method is to
find a new value U ′ which has the same probability weight as U and thus is
automatically accepted.

Let us first illustrate the idea for the gauge group U(1). In that case we
can write U = exp(iϕ) and for the sum of staples obtain A = a exp(iα). The
exponent for the local probability (4.33), the local action, can be written as
(for U(1) the trace is gone and N = 1; compare (3.94))

β Re(U A) = β a Re
(
eiϕeiα

)
= β a cos(ϕ + α). (4.50)

Obviously the reflection of (ϕ + α) → −(ϕ + α) or, equivalently, the change
ϕ → (2π−2α−ϕ) leaves the local action invariant and thus is always accepted.

For the non-abelian groups one suggests a change according to the ansatz

U → U ′ = V † U† V † , (4.51)

with a gauge group element V chosen such that the action is invariant.
The choice of V is nontrivial in the general case. However, as discussed

in connection with (4.34), for the gauge group SU(2) the sum of staples A
is proportional to a group matrix and one constructs V = A/a with the real
number a =

√
det[A]. The matrix V is now unitary, i.e., V −1 = V †. We find

tr[U ′ A] = tr[V † U† V † A] = a tr[V † U†] = tr[A† U†] = tr[U A] . (4.52)

In the last step we have used the reality of the trace for SU(2) matrices. This
choice for U ′ indeed leaves the action invariant. Also the selection probability
T0 is symmetric, since U ′ = V † U† V † implies U = V † U ′† V †. In the rare case
that detA vanishes, any random link variable is accepted.

Implementing overrelaxation for other gauge groups like SU(3) may be
more involved and eventually not efficient. Usually only updating programs
for the gauge groups U(1) and SU(2) make use of this method. For SU(3)
overrelaxation has been studied in [17].

The overrelaxation algorithm alone is not ergodic. It samples the config-
uration space on the subspace of constant action. This is called the micro-
canonical ensemble. Since one wants to determine configurations according to
the canonical ensemble, i.e., distributed according to the Boltzmann weight,
one has to combine the overrelaxation steps with other updating algorithms,
such as Metropolis or heat bath steps.

4.4 Running the simulation

After having introduced the techniques and algorithms for the update we can
now discuss how to organize an actual simulation. A Monte Carlo simulation
of a lattice gauge theory consists of several basic steps:
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Initialization: The field configuration has to be initialized.
Equilibration updates: Sufficiently many updates have to be done, until

the subsequently generated configurations represent the (approximate)
equilibrium distribution.

Evaluation of the observables and intermediate updates: As soon as
the system is in equilibrium, one can start to compute the observables on
the Monte Carlo configurations. The configurations used for computing
the observables should be separated by several intermediate updates.

These steps are discussed in some detail below. After the data are produced
they have to be analyzed with regard to statistical properties (see Sect. 4.5).
Only then one can study the physics content of the resulting data.

Table 4.1 shows a schematic listing demonstrating how the individual parts
of the Monte Carlo program are combined in the computer code.

Table 4.1. Structure of a Monte Carlo program for pure gauge theory

Start of program

Declaration of parameters and variables:
Initialize random number generator.
Initialize tables (e.g., neighbor indices, factors, couplings).
Initialize gauge field configuration.

Loop over “equilibrating” iterations:
for n = 1 until nequi :

Update the configuration.
end for

Loop over iterations with update and measurements:
for n = 1 until nmeasure :

for i = 1 until ndiscarded :
Update the configuration.

end for
Measure the observables for the last of these configurations.
Write the values to some data file. (Maybe also save the
current configuration and the status of the random number
generator to some file.)

end for

Write the final configuration and the status of the random
number generator to some file for future restart.
Write the final output to the data file.
Close all open files.

End of program
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4.4.1 Initialization

Any field configuration can be chosen as initial configuration. After sufficiently
many updates, eventually configurations distributed according to the equilib-
rium distribution will be produced due to the Markov chain property (4.14).
Two typical start configurations are the so-called cold start and hot start con-
figurations.

Cold start: All link variables are set to the unit element (Uµ(n) = 1).
This corresponds to trivial plaquette variables and minimal gauge action, a
situation approximately expected for small gauge coupling g (large β). In
statistical models the weak coupling regime corresponds to low temperature,
hence the name.

Hot start: The gauge field matrices are chosen randomly in group space.
Usually one pays little care for a uniform distribution but just takes suitable
normalized random vectors for that purpose. From these the matrix rows are
built as discussed above in the unitarization procedure (4.26) and (4.27).

Some like it hot, some like it cold, some use mixed start configurations, like
one half of the variables cold and the other half hot. Virtually any value of the
total action can be mimicked this way, albeit without any internal structure.
In any case one has to equilibrate the system before calculating observables.

Very long sequences of updates have to be split into several subsequent
runs of the Monte Carlo program. In this case one starts with the last stored
configuration and the corresponding state of the random number generator.

4.4.2 Equilibration updates

The central part of the program is the updating subroutine. Given a con-
figuration one systematically updates all gauge links, suggesting new values
and accepting them according to one of the methods discussed. Visiting all
links once is often referred to as a sweep through the lattice. To optimize the
performance, i.e., to have large steps in the Markov chain, often sweeps with
different algorithms are combined. Such a combined sweep could consist of a
heat bath sweep followed by two or three overrelaxation sweeps.

An important question is whether one has performed sufficiently many
equilibration sweeps. Only after such an equilibration phase, the algorithm
produces configurations with the correct distribution (compare (4.14)). A sim-
ple, first test for sufficient equilibration is given by comparing how a set of
observables changes with the number of sweeps. In particular one can compare
one such series of data obtained from a cold start to a series of data obtained
from a hot start. As soon as the curves for the observables from the hot and
the cold run approach each other, the system is nearing equilibrium.

In general the speed at which the system approaches the equilibrium will
depend on the updating algorithm as well as on the gauge coupling β, the
size of the lattice, and the type of action used. Large systems and large β
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will require more equilibration steps than small lattices and small values of β.
Also different observables will approach their equilibrium values at different
rates.

In Sect. 4.5 we will put the determination of a sufficient number of equi-
libration steps on a sounder basis. There we will discuss the autocorrelation
time which is a measure for how much two subsequent configurations in a
Markov chain are correlated.

4.4.3 Evaluation of the observables

Once the system is in equilibrium, the configurations can be used for the
evaluation of the observables. Depending on the updating algorithm, sub-
sequently generated configurations will be more or less correlated. Thus
several sweeps should be performed between evaluating the observables.
We remark that often the evaluation of the observables is referred to as
measurement.

A careful analysis of the statistical parameters, in particular the afore-
mentioned autocorrelation time as discussed in Sect. 4.5, gives an indication
of how many intermediate configurations should be discarded between two
measurements. In practice this decision depends also on the cost for measur-
ing the observables. If the measurement of observables is expensive (like it is
for computing quark propagators on a gauge field background), one tries to
have less correlation between subsequently measured configurations. In any
case the final analysis should take into account that configurations may not
be statistically independent.

Two key observables for simulations of pure gauge theory are Wilson and
Polyakov loops (compare (3.50) and (3.60)). When performing the measure-
ments one typically makes use of translation invariance (for periodic boundary
conditions) and averages over all possible realizations of the observables in or-
der to improve the statistics. This means that for the Wilson loop one averages
over all positions where the loop can start from. In addition one can place the
loop in different planes (corresponding to the symmetry operations of a hy-
percubic lattice) which gives for a quadratic loop an average over 6 |Λ| terms
(where |Λ| denotes the number of sites) and an average over 12 |Λ| contribu-
tions for rectangular loops. For the Polyakov loop one averages over all spatial
positions n or, if products are considered, over all combinations n, m for each
distance |n−m|. This involves sums over very many terms and accumulation
of rounding errors is then an issue, in particular if one has to subtract large
contributions from each other. For that reason it is advisable to use higher
precision accuracy for these observables.

Often the resulting mean values of observables may be computed “on the
fly.” However, it pays off to store as many of the intermediate results as
possible in order to allow for a careful a posteriori analysis of the statistical
properties.
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4.5 Analyzing the data

The statistical analysis of the measured observables is the important final
step of a Monte Carlo simulation. This analysis should also provide one with
the information how many updating sweeps have to be discarded before con-
figurations in equilibrium are produced and how many sweeps are necessary
between two measurements. The final product of the statistical analysis is
the average value which one quotes for an observable and an estimate for the
corresponding statistical error.

4.5.1 Statistical analysis for uncorrelated data

We assume that we have computed the values (x1, x2, . . . , xN ) of some ob-
servable for a Markov sequence of Monte Carlo-generated configurations in
equilibrium. Each of the values of the sample corresponds to a random vari-
able Xi. All these variables have the same expectation value and variance:

〈Xi〉 = 〈X〉 , σ2
Xi

=
〈
(Xi − 〈Xi〉)2

〉
= σ2

X . (4.53)

Candidates for unbiased estimators for these values are

X̂ =
1
N

N∑

i=1

Xi , σ̂2
X =

1
N − 1

N∑

i=1

(
Xi − X̂

)2
. (4.54)

If the Xi are uncorrelated one finds for i .= j,

〈Xi Xj〉 = 〈Xi〉 〈Xj〉 = 〈X〉2 (4.55)

and the variance σ̂2
X allows one to determine the statistical error of X̂. To see

this first note that the sample mean value X̂ is an estimator for the correct
mean value: 〈X̂〉 = 〈X〉. It is, however, itself a random variable, since its value
may change from one set of N configurations to another set. The variance of
that estimator is

σ2
X̂

=
〈(

X̂ − 〈X〉
)2

〉
=

〈(
1
N

N∑

i=1

(Xi − 〈X〉)
)2〉

(4.56)

=
1

N2

〈
N∑

i,j=1

(Xi − 〈X〉) (Xj − 〈X〉)
〉

=
1
N

〈X2〉 − 〈X〉2 +
1

N2

∑

i&=j

〈XiXj〉 .

For uncorrelated Xi the contributions from i .= j factorize due to (4.55) and

σ2
X̂

=
1
N

σ2
X . (4.57)

This is the well-known result for uncorrelated measurements. Thus, for the
observable based on N measurements, the statistical error, i.e., the standard
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deviation (s.d.), is σX̂ . The value σX on the right-hand side of (4.57) is approx-
imated using σ̂X from (4.54). For the case of N uncorrelated measurements
one quotes the final result as

X̂ ± σ with σ =
σ̂X√
N

. (4.58)

The important message of this equation is that the statistical error decreases
like 1/

√
N with the number N of uncorrelated configurations.

4.5.2 Autocorrelation

Since in our case the data sample is the result of a (computer-)time series in
our Monte Carlo simulation there is high chance that the observables are in
fact correlated. This so-called autocorrelation leads to a nonvanishing auto-
correlation function, which we define as

CX(Xi, Xi+t) = 〈(Xi − 〈Xi〉) (Xi+t − 〈Xi+t〉)〉 = 〈Xi Xi+t〉 − 〈Xi〉 〈Xi+t〉 .
(4.59)

For a Markov chain in equilibrium the autocorrelation function depends only
on the (computer time) separation t and we write

CX(t) = CX(Xi, Xi+t) . (4.60)

Note that CX(0) = σ2
X . In a typical situation the normalized correlation

function ΓX exhibits exponential behavior asymptotically for large t:

ΓX(t) ≡ CX(t)
CX(0)

∼ exp
(
− t

τX,exp

)
, (4.61)

and one calls τX,exp the exponential autocorrelation time for X. The com-
plete expression for ΓX(t) involves a sum over several such terms. In (4.61)
we consider only the asymptotically leading term with the largest autocor-
relation time. This number provides information on how strongly subsequent
measurements are correlated. The exponential autocorrelation time τexp is the
supremum of the values τX,exp for all possible observables X:

τexp = sup
X

τX,exp . (4.62)

Autocorrelations lead to systematic errors which are O (exp(−t/τexp)) if the
computer time between subsequent measurements is t.

For correlated random variables Xi the terms with i .= j in the second line
of (4.56) do not vanish and one can continue this equation to obtain for the
correlated case
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σ2
X̂

=
1

N2

N∑

i,j=1

CX(|i − j|) =
1

N2

N−1∑

t=−(N−1)

N−|t|∑

k=1

CX(|t|)

=
N∑

t=−N

N − |t|
N2

CX(|t|) =
CX(0)

N

N∑

t=−N

ΓX(|t|)
(

1 − |t|
N

)

≈ σ2
X

N
2

(
1
2

+
N∑

t=1

ΓX(|t|)
)

≡ σ2
X

N
2 τX,int ,

(4.63)

where we have introduced the integrated autocorrelation time

τX,int =
1
2

+
N∑

t=1

ΓX(t) . (4.64)

This definition is motivated by the observation that for exponential behavior

τX,int =
1
2

+
N∑

t=1

ΓX(|t|) ≈
∫ ∞

0
dt e−t/τ = τ (for large τ) . (4.65)

In the last step of (4.63) we have neglected the factor 1 − |t|/N which is
justified for large enough N due to the exponential suppression of ΓX(|t|).

Computing τX,int in a realistic situation one has to cut off sum (4.64) at
a value of t where the values of Γ (t) become unreliable. Usually one then
assumes exponential behavior for the part not explicitly taken into account
in the sum. Still, the determination of τexp or even τint is a delicate business.
Usually one needs at least 1000 τ data values for estimates of τ itself. In order
to judge whether the measured autocorrelation time is reliable, one therefore
should start with small size lattices and high statistics and work oneself up
to larger sizes, carefully checking the behavior and reliability of C(t).

The variance σ2
X̂

computed in this way is larger than the variance com-
puted from (4.57), which assumes an uncorrelated sample. The number of
effectively independent data out of N values is therefore

Nindep =
N

2 τX,int
(4.66)

or
σ2

X̂,corrected
= 2 τX,int σ

2
X̂

. (4.67)

For equilibration from some start configuration one should discard at least
20 τ , for good statistical accuracy maybe 1000 τ configurations. When pro-
ducing data with 1% errors one typically needs > 10, 000 τ values. For more
detailed discussions, cf. [18–20].

Summing up our results we find that for the correlated case the result one
quotes is given by

X̂ ± σ with σ =
√

1
N

2 τX,int σ̂2
X . (4.68)
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Finally let us briefly mention the issue of critical slowing down. The auto-
correlation time depends on the updating algorithm but also on the parame-
ters of the lattice system. For lattice field systems one expects that

τX,int ∼ (ξX)z , τexp ∼ ξz , (4.69)

where ξX is the correlation length for the observable X and ξ the longest
correlation length within the system. The correlation length is defined from the
exponential decay of correlation functions between local observables measured
at different points on the lattice, i.e., 〈X(x)X(y)〉 ∼ e−|x−y|/ξX for large |x−y|.
The dynamical critical exponent z ≥ 0 depends on the updating algorithm. At
critical points ξ approaches infinity, however, on finite lattices of linear size
L one has ξ ≤ L. Thus, near a critical point, the computational effort grows
like a power of the extension of the lattice:

numerical cost ∝ Lz . (4.70)

This behavior is called critical slowing down. For first-order phase transitions,
where the system may tunnel between different phases, the autocorrelation
time grows like exp(c LD−1) for a D-dimensional lattice.

We summarize: From the data one has to get an estimate of the autocor-
relation time. This provides (a) information on the number of update sweeps
to be discarded between measurements and (b) a correction factor to the
statistical error derived naively as for statistically independent data.

4.5.3 Techniques for smaller data sets

If it is too expensive to compute the autocorrelation time – and unfortunately
this is often the case in Monte Carlo calculations for quantum field theory
problems – there are simpler statistical methods for obtaining at least some
estimate for the correlation of the data.

Data blocking methods: One divides the data into sub-blocks of data of
size K, computes the block mean values, and considers them as new vari-
ables Xi. The variance of these blocked Xi then should decrease like 1/K
if the original data were independent. One repeats this for a sequence
of different values for K. As soon as the 1/K behavior is observed for
large enough K one may consider these block variables as statistically
independent.

Once the data (or the block results) can be considered independent, one
may determine the expectation values of the observables of interest and their
errors. Often, however, the number of data is too small to get a reliable es-
timate of the variance of the computed expectation values. Another obstacle
may be that error propagation is unreliable or impossible to determine. There
are two efficient and easy-to-use methods dealing with both problems. Both
assume that the data are not correlated.
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Statistical bootstrap: Given a set of N data, assume that we are interested
in some observable θ which may be estimated from that set. This observ-
able can also be, e.g., the result of a fit based on all N raw data. Let us
call the value of the observable obtained from the original data set θ̂. One
recreates from the sample repeatedly other samples by choosing randomly
N data out of the original set. This costs essentially nothing, since we just
recycle the original data set for the building of new sets. Let us assume
we have done this K times and thus have K sets of N data values each.
Of course some values will enter more than once in the new sets. For each
of these sets one computes the observable θ resulting in values θk with
k = 1, . . . , K. Then one determines

θ̃ ≡ 1
K

K∑

k=1

θk , σ2
θ̃
≡ 1

K

K∑

k=1

(
θk − θ̃

)2
. (4.71)

These are estimators for 〈θ〉 and σ2
θ . They are not unbiased and therefore

θ̃ .= θ̂ for finite K. The difference is called bias and gives an idea on
how far away the result may be from the true 〈θ〉. As final result for the
observable one quotes 〈θ〉 = θ̃ ± σθ̃.

Jackknife: We start with a data set of size N and an observable θ like for
the statistical bootstrap. The value of the observable computed for the
original set is again called θ̂. One now constructs N subsets by removing
the nth entry of the original set (n = 1, . . . , N) and determines the value
θn for each set. Then

σ2
θ̂
≡ N − 1

N

N∑

n=1

(
θn − θ̂

)2
. (4.72)

The square root of the variance gives an estimate for the standard devia-
tion of θ̂. For the final result one quotes either 〈θ〉 = θ̂ ± σθ̂ or replaces θ̂
by the unbiased estimator. The bias may be determined from

θ̃ ≡ 1
N

N∑

n=1

θn , (4.73)

leading to θ̂ − (N − 1)
(
θ̃ − θ̂

)
as the unbiased estimator for 〈θ〉.

In a practical implementation both, statistical bootstrap and jackknife, may
be combined with blocking by organizing the data in blocks and constructing
subsets by removing blocks instead of only single values.

Another characteristic aspect of Monte Carlo simulations is the fact that
often the observables, one is interested in, are not simple averages but quan-
tities that are obtained from a fit. An example is the energy levels obtained
from an exponential fit to a Euclidean correlator (see (1.1)). A single measure-
ment of the correlator is fluctuating far too much for a reasonable fit. Thus
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one first has to average many measurements of the correlator before the fit
can be performed. However, for a naive determination of the error, one would
need many such sets of data for the correlator.

A powerful feature of the statistical bootstrap and the jackknife methods
is the fact that they can be applied to the determination of the statistical error
for fitted quantities. Also the randomly chosen samples of the bootstrap and
the reduced samples of the jackknife method are large enough for performing
a fit. Thus these two methods can be used for determining the errors for fitted
quantities without the need for additional data or consideration of complicated
error propagation.

4.5.4 Some numerical exercises

The data have been determined from the Monte Carlo-generated gauge field
configurations. Now one can start to explore physics. In this last section we
briefly discuss two simple observables – the average plaquette and the static
potential as obtained from the correlator of Polyakov loops. These observables
are simple, can be calculated easily, and are well suited for a first simulation
of a lattice gauge theory in an introductory course. We stress that the data
and methods presented here are not meant to be state of the art but illustrate
what can be achieved in a basic simulation.

Repeated Monte Carlo runs for different gauge couplings and lattice sizes
provide an idea about the functional behavior of observables. As our first
example let us consider the sum of plaquette variables as it enters the Wilson
gauge action (3.93) for the gauge group SU(N),

SP [U ] =
1
N

∑

P

Re tr [UP ] , (4.74)

where the sum runs over all plaquettes, counting only one orientation. Its
expectation value is

〈SP 〉 =
∫
D[U ] exp (β SP [U ]) SP [U ]∫

D[U ] exp (β SP [U ])
. (4.75)

Here we have used that the action S is related to SP by S[U ]=β (6|Λ| − SP [U ])
(see (3.93)). This relation allows one to cancel the constant term of the Boltz-
mann factor in the numerator with the same factor appearing in the nor-
malization 1/Z. As a function of the inverse gauge coupling β one knows
〈SP 〉 for small β from the strong coupling expansion and for large β from the
weak coupling expansion. Usually one plots the normalized quantity EP ≡
〈SP 〉/(6|Λ|) which assumes values between 0 and 1 as in Fig. 4.2. The deriva-
tive dEP /dβ is related to the second and first moments of SP , since from (4.75)
one finds

d〈SP 〉
dβ

= 〈S2
P 〉 − 〈SP 〉2 . (4.76)
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Fig. 4.2. The plaquette expectation value EP ≡ 〈SP 〉/(6|Λ|) as a function of β
for SU(3) gauge theory with Wilson gauge action on a 124 hypercubic lattice. The
data have been generated as discussed in the text, with increasing β in small steps.
For each step 50 equilibrating iterations have been done, followed by 200 groups of
one discarded update and one update with measurement. Although there appears
to be a maximum of the slope near β ≈ 5.7, further analysis shows that this is
not a signal of a phase transition. As far as numerics shows, the confinement phase
for pure SU(3) lattice gauge theory case extends from β = 0 to the highest values
studied and presumably up to infinity

This quantity is called the specific heat in analogy to statistical spin systems.
From these we know that the specific heat grows with the system’s correla-
tion length. The quantity therefore is an indicator whether one approaches
a critical point in the phase landscape. Studying (4.75) and (4.76) for U(1)
gauge theory exhibits a (first-order) phase transition near β ≈ 1 (for Wilson’s
action). For SU(2) and SU(3) no such signal has been seen although one does
observe a maximum at intermediate coupling values. This indicates a nearby
singularity in the multi-dimensional coupling space of actions.

The correlation function of Polyakov loops is related to the static quark
potential (compare (3.61)),

〈P (m)P (n)†〉 ∝ e−NT a V (r)
(
1 + O(e−NT a∆E)

)
, (4.77)

where r = |m − n|. Up to an irrelevant overall constant the potential is

aV (r) = − ln
(
〈P (m)P (n)†〉

)
/NT . (4.78)

The result of a determination of aV , based on this relation, is shown in the left-
hand side plot of Fig. 4.3. We present the result of a straightforward evaluation
of the Polyakov loop correlation function with relatively low statistics, which
can be reproduced within a few hours on a PC.

We stress that state-of-the-art calculations are based on expectation values
of Wilson loops. Results with much higher statistics and more sophisticated
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Fig. 4.3. The static potential V for SU(3) gauge theory in a pure gauge field sim-
ulation with Wilson action. Left-hand side: values from the correlation of Polyakov
loops as obtained on a 163 × 6 lattice at β = 5.7 from 50,000 subsequent iterations;
this is shown just to demonstrate that main features can be seen already in such a
very simple analysis. Much better and more sophisticated methods have been used.
An example is shown in the right-hand side figure, where the values are derived
from the expectation values of Wilson loops [21]. Both r and V were made dimen-
sionless using the Sommer parameter r0 (compare Chap. 3). (Right-hand side figure
reprinted from [21] with kind permission from Silvia Necco)

methods of analysis (e.g., [22, 23]) exist [21, 24, 25]. As an example of such
a calculation we show in the right-hand side plot the result from [21], where
different lattice sizes and gauge couplings were used. The relation between
the results for different gauge couplings is derived from the data and gives
information on the scaling properties (see Sect. 3.5 and Chap. 9).

Furthermore, using nonplanar Wilson loops (compare Fig. 3.3) one can
find out whether the lattice system, although on a hypercubic grid, does re-
cover rotational invariance as it should when approaching the continuum limit
(small lattice spacing, corresponding to large β). Figure 4.3 demonstrates that
this is indeed the case: Also points from off-axis distance vectors agree with
the overall shape. There one has chosen data for sufficiently large lattice sizes
and values of β. Choosing smaller lattices and smaller β produces noticeable
deviations.
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5

Fermions on the lattice

In our first look at QCD on the lattice in Chap. 2 we have already announced
that our formulation of lattice fermions has not reached its final form. In
particular we still need to take into account the correct statistics. In the first
section of this chapter we will show that the required Fermi statistics can be
implemented by using anti-commuting numbers for the quark fields, so-called
Grassmann numbers. We will discuss the rules for calculating with Grassmann
numbers, and we will derive a few key formulas for Gaussian integrals with
Grassmann numbers.

The lattice formulation of the fermions as presented in Chap. 2 still suffers
from certain lattice artifacts, so-called doublers. We will identify the doublers
by analyzing the Fourier transform of the lattice Dirac operator. To remove
the doublers we will add an extra term to the fermion action and in this way
arrive at the Wilson fermion action.

In a short section we will present the so-called hopping expansion for
fermionic observables. Although this expansion is useful only for very heavy
quarks, it provides an interesting conceptual insight: We will be able to inter-
pret the fermions as paths of link variables connecting points in space–time.
Finally we will discuss the symmetries of the Wilson action which we will need
later when we construct hadron interpolators in Chap. 6.

5.1 Fermi statistics and Grassmann numbers

5.1.1 Some new notation

Before we come to presenting the arguments for the need of Grassmann num-
bers, let us introduce some new notation. For the discussion in this chapter
it is convenient to separate the fermionic part 〈. . .〉F and the gauge field part
〈. . .〉G of the path integral and to write (compare (2.55), (2.56), and (2.57))

〈O〉 = 〈 〈O〉F 〉G . (5.1)

Gattringer, C., Lang, C.B.: Fermions on the Lattice. Lect. Notes Phys. 788, 103–122
(2010)
DOI 10.1007/978-3-642-01850-3 5 c© Springer-Verlag Berlin Heidelberg 2010
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The fermionic part 〈. . .〉F of the path integral is defined by

〈A〉F =
1

ZF [U ]

∫
D

[
ψ,ψ

]
e−SF [ψ,ψ,U ] A[ψ,ψ, U ] . (5.2)

In this integration U is an external field. The fermionic partition function

ZF [U ] =
∫

D
[
ψ,ψ

]
e−SF [ψ,ψ,U ] , (5.3)

depends on the gauge field through the gauge field dependence of the fermion
action SF [ψ,ψ, U ]. Later we will identify ZF [U ] as the so-called fermion deter-
minant, i.e., the determinant of the Dirac operator. The abbreviation 〈. . .〉G
for the gauge field part of the path integral is defined as

〈B〉G =
1
Z

∫
D[U ] e−SG[U ] ZF [U ]B[U ] . (5.4)

Here B[U ] could be 〈A〉F , but also other integrands, such as observables made
from the gauge fields only, are possible. As we will discuss below, the nature
of the fermionic part and the gauge field part of the path integral is quite
different. Thus the separation of the two parts will turn out to be convenient.

5.1.2 Fermi statistics

Let us now discuss the fermionic vacuum expectation value of a product of
fermion fields (αi, βi are Dirac indices, ai, bi refer to color, ni,mi are the
space–time arguments and fi, gi flavor labels)
〈
ψ(f1)(n1)α1

a1

ψ(f2)(n2)α2
a2

. . . ψ(fk)(nk)αk
ak

ψ
(g1)(m1)β1

b1

. . . ψ
(gk)

(mk)βk
bk

〉

F

.

(5.5)
As it stands, this product of fermion fields is not gauge-invariant in general.
Factors built from products of link variables might be needed to make it
gauge-invariant. However, here we are focusing on the fermionic part of the
path integral and such gauge factors can be added later before the integration
over the gauge field is performed.

One of the defining properties of fermions is the requirement that they
obey Fermi statistics. For our vacuum expectation value (5.5) this implies
antisymmetry under the interchange of quantum numbers. If we interchange
the quantum numbers of any two of the fermions, say we interchange

f1 ↔ f2 , n1 ↔ n2 , α1 ↔ α2 , a1 ↔ a2 , (5.6)

the vacuum expectation value (5.5) has to acquire a minus sign. The inter-
change (5.6) is equivalent to commuting the first two fermion variables in
(5.5), and the requirement of producing a minus sign can be accounted for by
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demanding an extra minus sign under this commutation. Thus we require the
fermion fields to behave as anti-commuting numbers for any combination of
the indices f, f ′, n, n′, α, α′, a, a′,

ψ(f)(n)α
a
ψ(f ′)(n′)α′

a′
= −ψ(f ′)(n′)α′

a′
ψ(f)(n)α

a
. (5.7)

Also the ψ have to anti-commute among each other and furthermore the ψ
have to anti-commute with the ψ. Hence in addition to (5.7) we demand

ψ
(f)

(n)α
a
ψ

(f ′)
(n′)α′

a′
= −ψ

(f ′)
(n′)α′

a′
ψ

(f)
(n)α

a
, (5.8)

ψ(f)(n)α
a
ψ

(f ′)
(n′)α′

a′
= −ψ

(f ′)
(n′)α′

a′
ψ(f)(n)α

a
. (5.9)

Thus all fermionic degrees in our lattice theory anti-commute with each other.
We remark that the fermionic path integral in terms of anti-commuting

numbers may be derived from the canonical anti-commutation relations for
fermions by introducing coherent states. For this approach we refer the reader
to [1, 2] for an introductory presentation.

5.1.3 Grassmann numbers and derivatives

After having motivated the use of anti-commuting numbers, so-called Grass-
mann numbers, for the fermionic path integral, we need to learn how to cal-
culate with Grassmann numbers.1 We consider a set of Grassmann numbers
ηi, i = 1, . . . , N , obeying

ηi ηj = − ηj ηi , (5.10)

for all i, j. This equation implies that the ηi are nilpotent, i.e., they obey
η 2

i = 0. Hence the power series for a function of the ηi terminates after a finite
number of terms, and the only relevant class of functions are polynomials,

A = a +
∑

i

aiηi +
∑

i<j

aijηiηj +
∑

i<j<k

aijkηiηjηk + . . . + a12 ... Nη1η2 . . . ηN ,

(5.11)
with complex coefficients a, ai, aij . . . a12 ... N . These polynomials can be added
and multiplied and form a so-called Grassmann algebra. The Grassmann num-
bers ηi are referred to as the generators of the Grassmann algebra.

One may differentiate elements of the Grassmann algebra with respect to
the generators. In order to develop the rules for such Grassmann derivatives,
we consider a simple example. For a Grassmann algebra with only N = 2
generators the most general function is

A = a + a1 η1 + a2 η2 + a12 η1η2 . (5.12)
1An introductory text on Grassmann numbers, going beyond our short presen-

tation, can be found in [3].
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We define the left derivative of A with respect to η1 by

∂

∂η1
A = a1 + a12 η2 . (5.13)

However, using (5.10) we can interchange the order of the generators in the
last term of (5.12) and write our polynomial A also in the form

A = a + a1 η1 + a2 η2 − a12 η2η1 . (5.14)

Thus, in order to get consistent results, we have to assign the Grassmann
property also to the derivative operator:

∂

∂η1
η2 = −η2

∂

∂η1
. (5.15)

Furthermore, if we apply another derivative ∂/∂η2 to ∂/∂η1A, we find that for
consistency also the derivatives have to anti-commute with each other. Thus
we define the following rules for our derivatives:

∂

∂ηi
1 = 0 ,

∂

∂ηi
ηi = 1 ,

∂

∂ηi

∂

∂ηj
= − ∂

∂ηj

∂

∂ηi
,

∂

∂ηi
ηj = −ηj

∂

∂ηi
(for i %= j) .

(5.16)

5.1.4 Integrals over Grassmann numbers

In addition to differentiation, we also want to find a consistent definition of
integration over Grassmann numbers. The guiding principle of our construc-
tion is to implement the properties of the integration in RN . More specifically,
we consider the integral over a domain Ω ⊂ RN , with an integrand f that
vanishes at the boundary ∂Ω,

∫

Ω
dNx f(x) =

∫

Ω
dx1 . . . dxN f(x1, x2, . . . , xN ) , (5.17)

as a linear functional of the function f . We want to construct a linear func-
tional

∫
dNη acting on Grassmann polynomials A with equivalent properties.

The requirement that the integral is a complex linear functional reads
∫

dNη A ∈ C ,

∫
dNη (λ1A1 + λ2A2) = λ1

∫
dNηA1 + λ2

∫
dNηA2 ,

(5.18)
where λ1, λ2 are complex numbers. The second defining equation of the Grass-
mann integral is ∫

dNη
∂

∂ηi
A = 0 . (5.19)

This requirement is equivalent to demanding for the integration over Ω ⊂ RN

that the integrand f(x1, . . . , xN ) vanishes at the boundary ∂Ω. The corre-
sponding formula equivalent to (5.19) is
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∫

Ω
dNx

∂

∂xi
f(x1, . . . , xN ) = 0 . (5.20)

Formula (5.19) implies that whenever a polynomial A can be written as a
derivative of some other polynomial A′, the integral over A vanishes. Thus
we conclude that the integral over A must be proportional to the coefficient
a12 ... N for the highest power of the generators ηi. In order to complete the
definition of our integral we demand the normalization

∫
dNη η1η2 . . . ηN = 1 , which implies

∫
dNη A = a12 ... N . (5.21)

We can push the definition of the Grassmann integral even closer to inte-
gration in RN , by writing the measure dNη as a product

dNη = dηN dηN−1 . . . dη1 , (5.22)

where the individual measures dηi obey
∫

dηi 1 = 0 ,

∫
dηi ηi = 1 , dηi dηj = −dηj dηi . (5.23)

The last property is required by the freedom to interchange the ηi in the
integrand. Using (5.23) it is possible to define the integration over only a
subset of the generators ηi, analogous to the case of RN . It is interesting to
note that the measures dηi and the derivatives ∂/∂ηi obey the same algebraic
properties (compare (5.23) and (5.16)).

Finally we need to discuss how the measure dNη transforms under a linear
change of variables defined by

η′i =
N∑

j=1

Mijηj , (5.24)

where M is a complex N × N matrix. Applying this change of variables to
the normalization integral (5.21) we find

∫
dNη η1 . . . ηN =

∫
dNη′ η′1 . . . η′N =

∫
dNη′

∑

i1,...,iN

M1i1 . . . MNiN ηi1 . . . ηiN

=
∫

dNη′
∑

i1,...,iN

M1i1 . . . MNiN εi1i2...iN η1 . . . ηN = det[M ]
∫

dNη′ η1 . . . ηN .

(5.25)

In the second line of this equation we have reordered the product of Grassmann
numbers ηi1 . . . ηiN . This product vanishes if two of the indices ik are equal.
The sign from the reordering is given by the completely anti-symmetric tensor
εi1i2 ... iN . The summation of the matrix elements Mij with this tensor gives the
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determinant. Comparing the first and the last expression in (5.25) one reads
off the transformation properties of the measure in the Grassmann integration

dNη = det[M ] dNη′ . (5.26)

This transformation is “opposite” to the transformation of the integration
measure for RN , where det[M ] would appear on the left-hand side.

5.1.5 Gaussian integrals with Grassmann numbers

We finally derive formulas for Gaussian integrals with Grassmann numbers
which we will need for our treatment of lattice fermions. In particular we
consider a Grassmann algebra with 2N generators ηi, ηi, i = 1, 2, . . . , N . We
stress that all these 2N generators anti-commute with each other, i.e., we have

ηiηj = −ηjηi , ηiηj = −ηjηi , ηiηj = −ηjηi . (5.27)

The first integral we prove is the so-called Matthews–Salam formula [4, 5]

ZF =
∫

dηNdηN . . . dη1dη1 exp




N∑

i,j=1

ηiMijηj



 = det[M ] , (5.28)

where M is a complex N ×N matrix. A possible minus sign in the exponent,
as it appears in (5.2), can be absorbed in the definition of M . When setting
M = −D, (5.28) establishes that the fermionic partition function (5.3) is
indeed a determinant, called fermion determinant.

To show the result (5.28) we define transformed integration variables η′j

η′j =
N∑

k=1

Mjkηk . (5.29)

From (5.26) we find for the transformation of the measure

dηNdηN . . . dη1dη1 = det [M ] dη′NdηN . . . dη′1dη1 . (5.30)

Using the transformation (5.29) and (5.30) we prove formula (5.28):

ZF = det[M ]
∫ N∏

i=1

dη′idηi exp




N∑

j=1

ηjη
′
j



 = det[M ]
N∏

i=1

∫
dη′idηi exp (ηiη

′
i)

= det[M ]
N∏

i=1

∫
dη′idηi (1 + ηiη

′
i) = det[M ] . (5.31)

In (5.31) we have used the fact that pairs of Grassmann objects such as η′iηi

and dη′jdηj commute with other pairs. In the second line we have expanded
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the individual exponential functions in power series. Due to the nilpotency of
Grassmann numbers these series terminate after the second term.

Let us now generalize the integral (5.28) by embedding the 2N -dimensional
Grassmann algebra generated by ηi, ηi, i = 1, 2, . . . , N into a 4N -dimensional
algebra generated by ηi, ηi, θi, θi, i = 1, 2, . . . , N . All these 4N Grassmann
numbers anti-commute with each other. However, we integrate only over the
ηi, ηi and the other generators θi, θi serve as source terms. The integral we
consider is the so-called generating functional for fermions. It is given by

W
[
θ, θ

]
=

∫ N∏

i=1

dηidηi exp




N∑

k,l=1

ηkMklηl +
N∑

k=1

θkηk +
N∑

k=1

ηkθk





= det[M ] exp

(
−

N∑

n,m=1

θn

(
M−1

)
nm

θm

)
. (5.32)

For proving this result we first complete the square in the exponent and write
the exponent as (we use summation convention for all indices):

(
ηi + θj

(
M−1

)
ji

)
Mik

(
ηk +

(
M−1

)
kl

θl

)
− θn

(
M−1

)
nm

θm . (5.33)

Then we perform a transformation of variables

η′k = ηk +
(
M−1

)
kl

θl , η′i = ηi + θj

(
M−1

)
ji

. (5.34)

From (5.23) it follows that the integration measure remains invariant under
this transformation. Applying the transformation (5.33) to (5.32) we find

W
[
θ, θ

]
= exp

(
−

N∑

n,m=1

θn

(
M−1

)
nm

θm

) ∫ N∏

i=1

dη′idη
′
i exp




N∑

k,l=1

η′kMklη
′
l





= det[M ] exp

(
−

N∑

n,m=1

θn

(
M−1

)
nm

θm

)
, (5.35)

where in the last step we have used (5.28), thus completing the proof.

5.1.6 Wick’s theorem

Using the generating functional (5.32) we can now discuss a key formula for
calculating the fermionic expectation value 〈. . .〉F for products of Grassmann
numbers. The formula is known as Wick’s theorem and reads

〈ηi1ηj1 . . . ηinηjn
〉F =

1
ZF

∫ N∏

k=1

dηkdηk ηi1ηj1 . . . ηinηjn
exp




N∑

l,m=1

ηlMlmηm





= (−1)n
∑

P (1,2,...,n)

sign(P )
(
M−1

)
i1jP1

(
M−1

)
i2jP2

. . .
(
M−1

)
injPn

, (5.36)
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where the sum in the second line runs over all permutations P (1, 2, . . . , n) of
the numbers 1, 2, . . . , n, and sign(P ) is the sign of the permutation P . The
expectation values in Wick’s theorem are often referred to as n-point functions.

The formula can be proven by noting that from the definition of W
[
θ, θ

]

in the first line of (5.32) follows

〈ηi1ηj1 . . . ηinηjn
〉F =

1
ZF

∂

∂θj1

∂

∂θi1

. . .
∂

∂θjn

∂

∂θin

W
[
θ, θ

] ∣∣∣∣
θ,θ=0

. (5.37)

Using the explicit form of the generating functional W
[
θ, θ

]
, given in the sec-

ond line of (5.32), and performing the derivatives with respect to the sources,
one arrives at the result (5.36). In a similar way it is easy to show that ex-
pectation values with different numbers of ηi and ηj vanish.

This completes our discussion of computing with Grassmann numbers, and
we now have the algebraic tools ready for working with fermions.

5.2 Fermion doubling and Wilson’s fermion action

In the last section we have introduced Grassmann numbers in order to in-
corporate Fermi statistics in our formulation of QCD on the lattice. In this
section we will first rewrite the naive fermion action presented in Chap. 2 as
a quadratic form. This step makes explicit that Wick’s theorem, shown in the
last section, can be applied. Based on this form we will then consider the free
case and analyze the Fourier transform of the lattice Dirac operator. We will
identify the aforementioned doublers and add a term to the action in order to
remove these unwanted degrees of freedom in the continuum limit.

5.2.1 The Dirac operator on the lattice

The naive fermion action presented in Sect. 2.2 reads (see (2.36)):

SF [ψ,ψ, U ]=a4
∑

n∈Λ
ψ(n)

(
4∑

µ=1

γµ
Uµ(n)ψ(n+µ̂)−U−µ(n)ψ(n−µ̂)

2a
+mψ(n)

)
.

(5.38)
Here we discuss the case of only a single flavor for notational convenience and
thus no sum over the flavor index occurs. The flavors differ only by the value
of the mass parameter m which is irrelevant for the discussion below.

Since the action is bilinear in ψ and ψ, we can write it in the form

SF [ψ,ψ, U ] = a4
∑

n,m∈Λ

∑

a,b,α,β

ψ(n)α
a

D(n|m)αβ
a b

ψ(m)β
b

. (5.39)

The naive Dirac operator on the lattice is then given by
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D(n|m)αβ
a b

=
4∑

µ=1

(γµ)αβ
Uµ(n)ab δn+µ̂,m − U−µ(n)ab δn−µ̂,m

2a
+ mδαβ δab δn,m .

(5.40)
In (5.39) we have rewritten the fermion action in exactly the form which is
used in Wick’s theorem (5.36) when setting M = −a4 D. The only notational
difference is that in (5.39) we sum over several different indices, while in (5.36)
we use only a single index to label the different Grassmann numbers. However,
this does not change the algebraic content or the applicability of the formula.

5.2.2 The doubling problem

Let us now compute the Fourier transform of the lattice Dirac operator
D(n|m) for trivial gauge fields Uµ(n) = 1, i.e., for the case of free lattice
fermions. In Appendix A.3 we collect and discuss the formulas necessary for
Fourier transformation on the lattice. Fourier transformation is applied in-
dependently to the two space–time arguments n and m. In order to have
a unitary similarity transformation the second index (here m) of a matrix
is Fourier transformed using the complex conjugate phase exp(iq · ma). The
Fourier transform of the Dirac operator (5.40) for trivial gauge field reads
(since Uµ(n) = 1 we omit the color indices for notational convenience and use
vector/matrix notation in Dirac space)

D̃(p|q) =
1
|Λ|

∑

n,m∈Λ
e−ip·na D(n|m) eiq·ma

=
1
|Λ|

∑

n∈Λ
e−i(p−q)·na

(
4∑

µ=1

γµ
e+iqµa − e−iqµa

2a
+ m1

)

= δ(p − q) D̃(p) , (5.41)

where |Λ| is the total number of lattice points (see Appendix A.3) and the
Fourier transform of the lattice Dirac operator is defined by

D̃(p) = m1 +
i
a

4∑

µ=1

γµ sin(pµa) . (5.42)

From the last line in (5.41) it is obvious that in the new basis, where the matrix
elements are labeled by p, q, the Dirac operator is diagonal in the momenta.
Thus, in order to calculate the inverse D−1(n|m) of the Dirac operator in real
space, we simply need to compute the inverse of the 4 × 4 matrix D̃(p) and
then invert the Fourier transformation. The matrix D̃(p)−1 can be calculated
easily with the help of (A.26),

D̃(p)−1 =
m1− ia−1

∑
µ γµ sin(pµa)

m2 + a−2
∑

µ sin(pµa)2
, (5.43)
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and we obtain upon inverting the Fourier transformation

D−1(n|m) =
1
|Λ|

∑

p∈Λ̃

D̃(p)−1 eip·(n−m)a , (5.44)

where we have eliminated one of the momentum sums using δ(p − q) from
(5.41). Thus for free fermions we have calculated the inverse D−1(n|m) of the
lattice Dirac operator. This inverse is referred to as the quark propagator.

According to the Wick’s theorem (5.36), the quark propagator governs the
behavior of n-point functions and therefore it is important to analyze it. For
free fermions this analysis is best done in momentum space, i.e., we study
the momentum space propagator D̃(p)−1. Of particular interest is the case of
massless fermions and we set m = 0 in (5.43). First we remark that for fixed
p the propagator has the correct naive continuum limit,

D̃(p)−1
∣∣∣
m=0

=
−ia−1

∑
µ γµ sin(pµa)

a−2
∑

µ sin(pµa)2
a→0−→

−i
∑

µ γµpµ

p2
. (5.45)

In the continuum the momentum space propagator for massless fermions
(right-hand side of (5.45)) has a pole at

p = (0, 0, 0, 0) . (5.46)

This pole corresponds to the single fermion which is described by the contin-
uum Dirac operator. On the lattice the situation is different. There the propa-
gator for free fermions (center term in (5.45)) has additional poles: Whenever
all components are either pµ = 0 or pµ = π/a, we find a pole. The momentum
space contains all momenta pµ ∈ (−π/a, π/a], with −π/a and π/a identified
(compare Appendix A.3), and we cannot simply exclude the value pµ = π/a.
Thus, as it stands, our lattice Dirac operator has unphysical poles at

p = (π/a, 0, 0, 0) , (0, π/a, 0, 0) , . . . , (π/a, π/a, π/a, π/a) . (5.47)

It is easy to see that this gives rise to 15 unwanted poles, the so-called doublers.
We now discuss a way to remove the doublers from our theory, at least in the
continuum limit.

5.2.3 Wilson fermions

In order to remove the doublers we need to distinguish between the proper
pole with all pµ = 0 and the doublers that contain momentum components
pµ = π/a. A possible solution was suggested by Wilson. He proposed to add
an extra term, such that the momentum space Dirac operator reads

D̃(p) = m1 +
i
a

4∑

µ=1

γµ sin(pµa) + 1
1
a

4∑

µ=1

(1 − cos(pµa)) . (5.48)
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The extra term, the so-called Wilson term, is exactly what we need. For
components with pµ = 0 it simply vanishes. For each component with pµ =
π/a it provides an extra contribution 2/a. This term acts like an additional
mass term, and the total mass of the doublers is given by

m +
2 .

a
, (5.49)

where . is the number of momentum components with pµ = π/a. In the limit
a → 0 the doublers become very heavy and decouple from the theory. If one
calculates the corresponding momentum space propagator D̃(p)−1, one finds
that the unwanted poles are gone and only the physical pole (5.46) remains.

For the free case, the form of the Wilson term in position space can be
found by inverse Fourier transformation of the last term in (5.48). It contains
nearest neighbor terms which can be made gauge-invariant by inserting link
variables. One obtains (U−µ(n) ≡ Uµ(n − µ̂)†):

− a
4∑

µ=1

Uµ(n)ab δn+µ̂,m − 2δab δn,m + U−µ(n)ab δn−µ̂,m

2a2
. (5.50)

The Wilson term is a discretization of −(a/2)∂µ∂µ, i.e., proportional to the
negative Laplace operator.2 The pre-factor a shows that the Wilson term
vanishes in the naive continuum limit a → 0. We can now combine the Wilson
term (5.50) with the naive Dirac operator to obtain Wilson’s complete Dirac
operator. Using a particularly compact notation it reads:

D(f)(n|m)αβ
a b

=
(
m(f) +

4
a

)
δαβ δab δn,m− 1

2a

±4∑

µ=±1

(1− γµ)αβ Uµ(n)ab δn+µ̂,m ,

(5.51)
where we have defined

γ−µ = −γµ , µ = 1, 2, 3, 4 . (5.52)

In (5.51) we have now also made explicit the flavor dependence of the mass
parameter m(f). Thus the fermion action for QCD with Nf flavors is given by

SF [ψ,ψ, U ] =
Nf∑

f=1

a4
∑

n,m∈Λ
ψ

(f)
(n)D(f)(n|m)ψ(f)(m) . (5.53)

We stress that the right-hand side depends on the gauge field U , via the
U -dependence of the Dirac operator D. For notational simplicity we do not
display the argument U of the Dirac operator explicitly.

We now have a working formulation of lattice QCD, Wilson’s formulation.
For the convenience of the reader we collect the defining formulas for Wilson’s

2Taylor expansion gives (f(x + ε) − 2f(x) + f(x − ε)) /ε2 = f ′′(x) + O(ε2).
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formulation of lattice QCD in Appendix A.4. Although we will further refine
our formulation in the next chapters, we strongly recommend that the reader
has a brief look at Appendix A.4 now. It summarizes all the conceptual steps
we have taken so far in this book and highlights again the red line through
the construction.

5.3 Fermion lines and hopping expansion

In this section we analyze Wilson fermions in the limit of large quark mass.
This will lead us to the so-called hopping expansion. Although the hopping ex-
pansion is not very powerful as an analytical tool, it will provide an important
physical insight: Fermions can be viewed as paths of link variables, so-called
fermion lines [6–8]. Based on this insight we will justify a step which we used
in Chap. 3 when constructing the Wilson loop, namely the replacement of
the quark–antiquark pair by a Wilson line (compare (3.57)–(3.47)). We will
also find an interpretation for the fermion determinant: It can be seen as a
collection of closed fermion lines, so-called fermion loops.

5.3.1 Hopping expansion of the quark propagator

In Sect. 5.1 we have shown that the fermionic expectation value of a fermion
and an anti-fermion field, i.e., a two-point function of fermions, is given by
the inverse of the Dirac operator,

〈
ψ(n)α

a
ψ(m)β

b

〉

F

= a−4 D−1(n|m)αβ
a b

. (5.54)

This formula follows from Wick’s theorem (5.36) by setting M = −a4 D, n = 1
and replacing the multi-index i1 by (n, α, a) and j1 by (m, β, b).

The inverse of the Dirac operator, the quark propagator D−1, as well as
the fermion determinant will now be expanded for large quark mass m. In
particular we will use Wilson’s Dirac operator given in (5.51). This Dirac
operator can be written as (we use matrix/vector notation)

D = C (1− κH) with κ =
1

2 (am + 4)
, C = m +

4
a

, (5.55)

H(n|m)αβ
a b

=
±4∑

µ=±1

(1− γµ)αβ Uµ(n)ab δn+µ̂,m . (5.56)

The term H collects all nearest neighbor terms in the Dirac operator and thus
is referred to as hopping matrix. The real number κ is the hopping parameter.
The constant C is irrelevant, since it can be absorbed in a redefinition of the
quark fields ψ →

√
C ψ, ψ →

√
C ψ. Thus we can equally work well with the

Dirac operator in the form
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D = 1 − κH , κ =
1

2 (am + 4)
. (5.57)

The essence of the hopping expansion is that κ becomes small for large
mass. The idea is to expand D−1 and det[D] in powers of κ. For the quark
propagator one can use the well-known geometric series

D−1 = (1 − κH )−1 =
∞∑

j=0

κj Hj . (5.58)

The series converges for κ‖H‖ < 1. It is relatively easy to show that the norm3

of the hopping term obeys ‖H‖ ≤ 8 and thus the series converges for κ < 1/8.
Let us look at (5.58) in more detail and display all indices explicitly:

D−1(n|m)αβ
a b

=
∞∑

j=0

κj Hj(n|m)αβ
a b

. (5.59)

Here Hj(n|m)αβ
a b

denotes an entry of the j-th power of H. Using (5.56) we

find for these powers

H0(n|m)αβ
a b

= δαβ δab δn,m ,

H1(n|m)αβ
a b

=
±4∑

µ=±1

(1− γµ)αβ Uµ(n)ab δn+µ̂,m ,

H2(n|m)αβ
a b

=
∑

l,ρ,c

H(n, l)αρ
a c

H(l,m)ρ β
c b

(5.60)

=
±4∑

µ,ν=±1

((1−γµ)(1−γν))αβ (Uµ(n)Uν(n + µ̂))ab δn+µ̂+ν̂,m ,

Hj(n|m)αβ
a b

=
±4∑

µi=±1

(
j∏

i=1

(1−γµi)

)

αβ

Pµ1...µj (n)ab δn+µ̂1+ ... +µ̂j ,m .

In the last line we used the abbreviation

Pµ1...µj (n)ab =
(
Uµ1(n)Uµ2(n + µ̂1) . . . Uµj (n + µ̂1 + µ̂2 . . . µ̂j−1)

)
ab

,
(5.61)

for the emerging products of link variables. The 0-th and first powers of H
are trivial. For computing the second power in (5.60) we wrote the matrix
multiplication explicitly as a sum over l, ρ, c and then used (5.56). The sum
over l vanishes due to the Kronecker deltas. Iterating this step one calculates
higher powers of H giving the result in the last line of (5.60).

3‖H‖ = maxφ

√
(Hφ, Hφ)/(φ, φ), with φ a complex vector of length 12 |Λ|.
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n

m

Fig. 5.1. The propagator from n to m is a sum over paths of link variables con-
necting the two points. A path of length j comes with a factor of κj

The terms in (5.60) have a simple interpretation. Due to the Kronecker
delta δn+µ̂1+ ... +µ̂j ,m they are nonvanishing only if the positions n and m on
the lattice are related by

m = n+ µ̂1 + . . . + µ̂j for a combination of µi ∈ {±1,±2,±3,±4} . (5.62)

If the condition (5.62) is obeyed, then the two sites n and m are connected
by the product of link variables on the path as given in (5.61). In Dirac space
one finds products

j∏

i=1

(1−γµi) , (5.63)

where the µi are the orientations of the links on the path. It is interesting to
note that

(1− γµ) (1 + γµ) = 0 . (5.64)

This property excludes back-tracking paths, i.e., paths containing 180◦ turns.
To summarize our hopping expansion of the quark propagator, we find

that D−1(n|m) can be written as a sum of non-back-tracking paths. A path
of length j comes with a power of κj . For given values n and m, the leading
term is the shortest path (or a sum over the shortest paths) connecting n and
m. Higher orders in κ will contribute longer and longer paths connecting the
two points. Along the links of these paths the products of the link variables
Uµ(n) provide the factors in color space and the products (5.63) the factors in
Dirac space. Some paths contributing in the hopping expansion are illustrated
in Fig. 5.1.

With this result we have also justified the replacement of the prod-
uct of fermion fields by a Wilson line in our construction of the Wilson
loop (Sects. 3.3.1–3.3.4): The Wilson line is simply one of the terms in
the hopping expansion. In particular in the limit of infinite quark mass
(κ → 0), which defines the potential of a static quark, only the short-
est possible path will contribute in the hopping expansion, i.e., the straight
Wilson line.
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5.3.2 Hopping expansion for the fermion determinant

Similar to the quark propagator, one can also expand the fermion determinant
in κ. The central equation is

det[D] = det[1−κH] = exp (tr [ln (1−κH)]) = exp



−
∞∑

j=1

1
j
κj tr

[
Hj

]


 .

(5.65)
In the first step we have used (5.57) and in the second a well-known formula
for the determinant (see Appendix A.5). In the last step the logarithm was
expanded in a power series.

From (5.65) it follows that for the hopping expansion we have to compute
traces of powers of the hopping term. These powers have already been calcu-
lated in (5.60). Taking the trace means, in addition to the trace in Dirac and
color space, that we have to set n = m in (5.60) and to sum over the lattice
points m. When n = m, the paths of links which we have obtained are turned
into closed loops, so-called fermion loops.4 Thus the fermion determinant is
the exponential of a sum over closed loops of link variables. Since for each
loop the trace over color indices is taken, these loops are gauge-invariant, and
so is the determinant. A loop of length j comes with a factor κj/j. In Dirac
space we have again products of the type (5.63) but now the trace is taken.
Again (5.64) excludes non-back-tracking loops.

This concludes our discussion of the hopping expansion. The important
message to be learned is that quark propagators are sums over fermion lines,
i.e., paths of link variables, and the fermion determinant is a sum over closed
fermion loops.

5.4 Discrete symmetries of the Wilson action

Let us now discuss some symmetries of the Wilson fermion action. Certainly
the lattice discretization breaks many of the symmetries which we have in the
continuum, such as translation or rotation invariance. On the lattice we are
reduced to discrete translations and rotations, but one can, e.g., demonstrate
that in the continuum limit continuous rotational symmetry is recovered.

In this section, however, we concentrate on the discrete symmetries like
charge conjugation C and parity P. These symmetries are important for the
construction of hadron interpolators which we will address in Chap. 6.

5.4.1 Charge conjugation

We begin our discussion of the discrete symmetries with the charge conjuga-
tion C. Charge conjugation transforms particles into antiparticles and acts on
the spinor fields via (we omit the flavor index in the following)

4Note that these are not the loops of weak coupling perturbation theory.
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ψ(n) C−→ ψ(n)C = C−1 ψ(n)T ,

ψ(n) C−→ ψ(n)C = −ψ(n)T C . (5.66)

In this formula the transposition T is used for notational convenience. It acts
on both color and Dirac indices, converting a 3 × 4 column spinor to a row-
spinor. The charge conjugation matrix C acts only on the Dirac indices and
is defined to obey the relations

CγµC−1 = −γT
µ . (5.67)

In Appendix A.2 we give the explicit form of C for the chiral representation
of the gamma matrices in (A.24).

The link variables transform under charge conjugation as

Uµ(n) C−→ Uµ(n)C = Uµ(n)∗ =
(
Uµ(n)†

)T
. (5.68)

When writing the link variable as Uµ(n) = exp (iaAµ(n)) (compare (2.39)),
we find that charge conjugation (5.68) corresponds to changing Aµ(n) →
−Aµ(n)T . This change takes into account that an antiparticle has the opposite
charge of the corresponding particle.

Let us now show that the Wilson action is indeed invariant under charge
conjugation. For the trivial (mass-type) term we find (sums and constant
factors are omitted for notational convenience)

ψ(n)C ψ(n)C = −ψ(n)T CC−1 ψ(n)T = −ψ(n)T ψ(n)T = ψ(n)ψ(n) ,
(5.69)

where the interchange of the Grassmann variables in the last step removes the
overall minus sign.

For the hopping part we find (we use the conventions γ−µ = −γµ and
U−µ(n) = Uµ(n − µ̂)†)

a4
∑

n

±4∑

µ=±1

ψ(n)C
1− γµ

2a
Uµ(n)C ψ(n + µ̂)C

= − a4
∑

n

±4∑

µ=±1

ψ(n)T C
1− γµ

2a
C−1 Uµ(n)∗ ψ(n + µ̂)T

= − a4
∑

n

±4∑

µ=±1

ψ(n)T 1 + γT
µ

2a

(
Uµ(n)†

)T
ψ(n + µ̂)T . (5.70)

In the last equation we have a product of transposed matrices and spinors.
This can be written as the transpose of the product of the matrices and spinors
in reverse order. Reversing the order of the two Grassmann objects produces
an overall minus sign. Since the whole product is a scalar, transposition can
be dropped altogether in the end. Thus we continue the last equation as
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a4
∑

n

±4∑

µ=±1

ψ(n + µ̂)
1 + γµ

2a
Uµ(n)† ψ(n)

= a4
±4∑

µ=±1

∑

m=n+µ̂

ψ(m)
1 + γµ

2a
Uµ(m − µ̂)† ψ(m − µ̂)

= a4
∑

m

±4∑

µ=±1

ψ(m)
1− γ−µ

2a
U−µ(m)ψ(m − µ̂)

= a4
∑

m

±4∑

µ=±1

ψ(m)
1− γµ

2a
Uµ(m)ψ(m + µ̂) , (5.71)

showing that also the hopping part is invariant under charge conjugation.

5.4.2 Parity and Euclidean reflections

A parity transformation P acts on our lattice fields as

ψ(n, n4)
P−→ ψ(n, n4)P = γ4 ψ(−n, n4) ,

ψ(n, n4)
P−→ ψ(n, n4)P = ψ(−n, n4) γ4 ,

Ui(n, n4)
P−→ Ui(n, n4)P = Ui(−n − î, n4)† , i = 1, 2, 3 ,

U4(n, n4)
P−→ U4(n, n4)P = U4(−n, n4) . (5.72)

Here a comment on the labeling of the lattice sites is in order: In our definition
of the lattice Λ (see (2.25) or (A.27)) the spatial lattice sites ni run from 0
to N − 1. This convention is particularly convenient for numerical studies.
However, one can equally well label the lattice sites as ni = −N/2+1,−N/2+
2, . . . , N/2. This latter convention, together with the periodic identification
N/2 + 1 ↔ −N/2 + 1 is used here when we apply the reflection n → −n.

The diagonal term of the Wilson action is trivially invariant under the
parity transformation (5.72), since in the sum over the spatial components, n
can always be replaced by a sum over −n. For the spatial part of the hopping
term we find

a4
∑

n,n4

±3∑

i=±1

ψ(n, n4)P
1− γi

2a
Ui(n, n4)P ψ(n + î, n4)P

= a4
∑

n,n4

±3∑

i=±1

ψ(−n, n4) γ4
1− γi

2a
γ4 Ui(−n − î, n4)† ψ(−n − î, n4)

= a4
∑

m=−n

∑

n4

±3∑

i=±1

ψ(m, n4)
1− γ−i

2a
U−i(m, n4)ψ(m − î, n4)

= a4
∑

m

∑

n4

±3∑

i=±1

ψ(m, n4)
1− γi

2a
Ui(m, n4)ψ(m + î, n4) . (5.73)
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For the temporal hopping part the equivalent steps are

a4
∑

n,n4

∑

µ=±4

ψ(n, n4)P
1− γµ

2a
Uµ(n, n4)P ψ(n, n4 ± 1)P

= a4
∑

n,n4

∑

µ=±4

ψ(−n, n4)
1− γµ

2a
Uµ(−n, n4)ψ(−n, n4 ± 1)

= a4
∑

m,n4

∑

µ=±4

ψ(m, n4)
1− γµ

2a
Uµ(m, n4)ψ(m, n4 ± 1) . (5.74)

Thus we have established that the Wilson fermion action is invariant under
parity transformations.

It is straightforward to show that also the Wilson gauge action is invariant
under C and P, and we leave this as an exercise to the reader. It has to be
stressed that also other lattice actions, which we discuss later, are invariant
under parity and charge conjugation. We will, however, not repeat the explicit
steps to show that.

In Minkowski space the time component and the spatial components are
distinguished by a relative sign in the metric. In Euclidean space there is no
such distinction and the Wilson action actually is invariant under the following
four, more general transformations Pµ, µ = 1, 2, 3, 4,

ψ(n)
Pµ−→ ψ(n)Pµ = γµ ψ (Pµ(n)) ,

ψ(n)
Pµ−→ ψ(n)Pµ = ψ (Pµ(n)) γµ ,

Uν(n)
Pµ−→ Uν(n)Pµ = Uν (Pµ(n) − ν̂)† , ν %= µ ,

Uµ(n)
Pµ−→ Uµ(n)Pµ = Uµ (Pµ(n)) , (5.75)

where Pµ(n) is the vector n with the sign of all components reversed, except
for nµ.

The fact that the action is invariant under under all four reflections Pµ

shows that in the Euclidean formulation none of the four directions is singled
out. We remark that the product operation P1P2P3 corresponds to the Eu-
clidean equivalent of time reflection. This reflection plays an important role for
the formal reconstruction of the Hilbert space for the Minkowski theory [9–11].
For this reconstruction it is also necessary to impose anti-periodic temporal
boundary conditions for the fermions. For this reason, numerical calculations
are often performed with anti-periodic temporal boundary conditions for the
fermions, while the gauge fields are usually periodic in all four directions. In
the thermodynamic limit, however, the choice of boundary conditions is ir-
relevant, except for studies of QCD at high temperature which we discuss in
Chap. 12.
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5.4.3 γ5-hermiticity

Let us finally discuss a more abstract symmetry of lattice Dirac operators
which, however, has important implications. Almost all Dirac operators D
(except when a chemical potential, a θ-term or a twisted mass term are intro-
duced, cf. Chaps. 10 and 12) are γ5-hermitian, i.e., they obey

(γ5 D)† = γ5 D or, equivalently, D† = γ5 Dγ5 . (5.76)

It is a straightforward exercise to show this, e.g., for Wilson’s lattice Dirac
operator (5.51): The diagonal term of (5.51) is real and does not change when
multiplied with γ5 from both sides. In the hopping term the factor (1 − γµ)
turns into (1+γµ) due to the properties of the γ-matrices. Since the sum runs
over both signs of µ we then may write

±4∑

µ=±1

(γ5 (1− γµ) γ5)αβ Uµ(n)ab δn+µ̂,m (5.77)

=
±4∑

µ=±1

(1 + γµ)αβ Uµ(n)ab δn+µ̂,m =
±4∑

µ=±1

(1− γµ)αβ U−µ(n)ab δn−µ̂,m

=
±4∑

µ=±1

(1− γµ)αβ Uµ(n − µ̂)†ab δn−µ̂,m =
±4∑

µ=±1

(1− γµ)αβ Uµ(m)†ab δn,m+µ̂ .

In the last step we have used the δ-function to replace the position of the gauge
field n − µ̂ by m. Comparison with (5.51) shows that Uµ has been replaced
by U†

µ and n and m have been exchanged. We have indeed demonstrated the
validity of (5.76).

The property is inherited by the inverse operator, the quark propagator,
which turns out to be useful in calculations of hadron correlation functions
in Sect. 6.2. Another characteristic of γ5-hermitian Dirac operators is that
their eigenvalues are either real or come in complex conjugate pairs, as we
discuss in more detail in Sect. 7.3.1. This property also implies that the fermion
determinant is real. The reality of the determinant will turn out to be crucial
for Monte Carlo simulations of lattice QCD with fermions, which we discuss
in Chap. 8.
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6

Hadron spectroscopy

The simplest quantities involving fermions that one can compute on the lattice
are the masses of hadrons. Since there are many combinations of quantum
numbers such as spin, parity, flavor content etc. there is a wealth of possible
hadrons. Reproducing all their masses correctly is already a powerful test for
the correctness of QCD. Over the last 20 years lattice QCD calculations of
the mass spectrum have improved continually and, for ground state baryons,
have reached impressive agreement with experimental data.

In this chapter we discuss the conceptual background and the actual im-
plementation of a numerical spectroscopy calculation. The hadron correlation
functions are not only necessary for computing the spectrum but enter also
in the determination of hadronic matrix elements addressed in later chapters.

We first discuss how to construct operators with the correct quantum num-
bers and their correlation functions and address the quenched approximation.
Subsequently we present techniques for quark sources and show how quark
propagators can be computed. We continue with the analysis of the resulting
hadron propagators and discuss how to obtain the hadron masses.

6.1 Hadron interpolators and correlators

In a typical QCD calculation one generates gauge configurations according
to the requested distribution and then computes various observables. These
include simple expectation values of plaquettes or of more extended operators
such as Wilson loops. Also quantities like the chiral condensate 〈ψψ〉 have
been studied and will be discussed in later chapters.

Here we concentrate on determining hadron masses, i.e., we perform a
hadron spectroscopy calculation. For this purpose one first computes quark
propagators for each gauge configuration. These are then suitably combined
to construct the hadron propagators. Finally, averaging over all gauge con-
figurations provides our estimate of the hadron propagators for subsequent
analysis.

Gattringer, C., Lang, C.B.: Hadron Spectroscopy. Lect. Notes Phys. 788, 123–156
(2010)
DOI 10.1007/978-3-642-01850-3 6 c© Springer-Verlag Berlin Heidelberg 2010
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The first step of such a spectroscopy calculation is the identification of
hadron interpolators O,O such that the corresponding Hilbert space operators
Ô, Ô† annihilate and create the particle states we want to analyze. A hadron
interpolator is a functional of the lattice fields with the quantum numbers
of the state one is interested in.1 Once the interpolators are identified we
consider the Euclidean correlator (1.12) of hadron interpolators O(nt), O(0)
located at time slices n4 = nt and n4 = 0.

For hadron spectroscopy one studies interpolators constructed out of
quarks and gluons. These are by construction gauge-invariant color singlets.
Such operators include:

• Local meson operators, like OM (n) ≡ ψ(n)Γψ(n), consisting of quarks and
antiquarks or baryon operators made out of three quarks; these should give
information on the mesons and baryons as predicted by QCD.

• Extended interpolators, also contributing to hadron propagators, involv-
ing, e.g., for mesons terms like ψ(n)Uµ(n)ψ(n+ µ̂) and similar for baryons.

• Pure gauge field interpolators like the plaquette, longer closed loops, or
more general gluonic operators. These interpolators couple to gluonic ob-
jects such as glueballs, but also to mesons.

• Other, more exotic color-singlet combinations of quarks and antiquarks
like ψψψψ and ψψψψψ.

• States with 3n quarks; these are just the nuclei. For example, the deu-
terium is a proton–neutron state made out of six valence quarks, three of
up-type and three of down-type.

According to (1.21), physically allowed states can be observed in the spec-
tral decomposition of the propagators of these interpolators,

〈
O(nt)O(0)

〉
=

∑

k

〈0|Ô|k〉〈k|Ô†|0〉 e−nta Ek

= A e−nta EH
(
1 + O

(
e−nta ∆E

))
, (6.1)

where A is a constant, EH is the energy of the lowest state |H〉 with 〈0|Ô|H〉 $=
0, and ∆E is the energy difference to the first excited state. From the leading
exponential decay we thus can extract the energy EH of the hadron.

6.1.1 Meson interpolators

The discrete symmetries which we have discussed in Sect. 5.4 play an impor-
tant role in the classification of hadrons and are needed for the construction
of hadron interpolators. To illustrate their use we discuss as an example the
construction of pion interpolators in more detail. Other meson interpolators
can then be constructed along the same lines with the help of Table 6.1, which
lists the quantum numbers of fermion bilinears.

1According to common practice, we will often use “operator” and “interpolator”
synonymously in the following.
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To be specific, we consider QCD with only two or three flavors (up, down,
strange). Instead of using a flavor index f attached to spinors denoted by
ψ,ψ, we often use a different symbol for each flavor. Thus u, u, d, d and s, s
denote the spinors for the three light flavors.

The pions, which we now consider in our example, are made from u and d
quarks only. An up-quark u has isospin I = 1/2, Iz =+1/2 and charge Q = 2/3 e,
where in our convention the charge of the electron is −e. For the down-quark
d we have I = 1/2, Iz =−1/2 and Q = −1/3 e. The pseudoscalar combinations
can be classified with respect to their isospin and are grouped into an iso-
triplet (I = 1) containing the particles π+, π0, π− with isospin components
Iz = 1, 0, −1 and an iso-singlet (I = 0) containing the η-meson.2

The charged pions π+ and π− have a mass of 140 MeV. They have zero
spin (J = 0), negative parity (P = −1), isospin I = 1, Iz = ±1, and electric
charge Q = ±e. Thus, for obtaining the correct charge and isospin, π+ must
be a d–u combination and π− is of the type u–d. We also expect them to
be color singlets. More explicitly we can use the pseudoscalar interpolators
(summation convention for all indices)

Oπ+(n) = d(n) γ5 u(n) = d(n)α
c

(γ5)αβ u(n)β
c

,

Oπ−(n) = u(n) γ5 d(n) = u(n)α
c

(γ5)αβ d(n)β
c

. (6.2)

For their transformation under parity (5.72) we find

Oπ+(n, n4) = d(n, n4) γ5 u(n, n4)
P−→ d(−n, n4) γ4γ5γ4 u(−n, n4) = −d(−n, n4) γ5 u(−n, n4)
= −Oπ+(−n, n4) , (6.3)

showing that our interpolator Oπ+ indeed has negative parity (the same holds
for Oπ−). The fact that the parity transformation changes the spatial vector
n into −n is irrelevant for interpolators where we project to zero momentum,
i.e., where we sum over all n (see Sect. 6.1.4). Applying charge conjugation
(5.66) gives

Oπ+(n) = d(n) γ5 u(n) C−→ −d(n)T Cγ5C
−1 u(n)T = −d(n)T γT

5 u(n)T

= u(n) γ5 d(n) = Oπ−(n) , (6.4)

where we used Cγ5C−1 = γT
5 , which follows from (5.67). The interchange

of the Grassmann variables cancels the overall minus sign. Equation (6.4)
establishes that charge conjugation transforms Oπ+ into Oπ− and vice versa.

The interpolator for the Iz = 0 component of the iso-triplet, the π0, is

Oπ0(n) =
1√
2

(
u(n) γ5 u(n) − d(n) γ5 d(n)

)
. (6.5)

2We remark that the physical η also has an admixture of ss. See, e.g., [1].
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Table 6.1. Quantum numbers of the most commonly used meson interpolators
according to the general form (6.9). We remark that the classification with respect
to C is for the flavor neutral interpolators only

State JPC Γ Particles

Scalar 0++ 1 , γ4 f0, a0, K
∗
0 , . . .

Pseudoscalar 0−+ γ5 , γ4γ5 π±, π0, η, K±, K0, . . .
Vector 1−− γi , γ4γi ρ±, ρ0, ω, K∗, φ, . . .
Axial vector 1++ γiγ5 a1, f1, . . .
Tensor 1+− γiγj h1, b1, . . .

The iso-singlet state (I = 0), the η-meson, is described by the interpolator

Oη(n) =
1√
2

(
u(n) γ5 u(n) + d(n) γ5 d(n)

)
. (6.6)

The properties of Oπ0 and Oη under the parity transformation are the same
as for the interpolators Oπ± , i.e., they have P = −1. Concerning charge
conjugation, Oπ0 and Oη are eigenstates with C = +1.

Other mesons differ from the examples we have discussed so far by their
flavor content as well as by spin and parity. We can, e.g., obtain the interpo-
lator for the strange K+ meson from the interpolator for π+, by replacing the
d quark with an s quark,

OK+(n) = s(n) γ5 u(n) . (6.7)

Different spin and parity correspond to different gamma matrices in the
fermionic bilinears. For example we obtain from the interpolator for π+ the
interpolator for the ρ+ vector meson (I = 1, Iz = +1, Q = +e, J = 1, P = −1)
by replacing γ5 with γi, i = 1, 2, 3:

Oρ+(n)i = d(n) γi u(n) , i = 1, 2, 3 . (6.8)

A general local meson interpolator has the form

OM (n) = ψ(f1)(n)Γ ψ(f2)(n) , (6.9)

where Γ is a monomial of gamma matrices, and we have for this equation
switched back to the notation with upper flavor indices fi. In the case of
degenerate flavors (f1 = f2) combinations of (6.9) are formed to obtain the
desired flavor symmetries, as was done in our interpolators for π0 and η in
(6.5) and (6.6). In Table 6.1 we list the matrices Γ for the most commonly
used interpolators together with the corresponding quantum numbers. We
remark that in addition to the local interpolators gauge-invariant combina-
tions of quarks and antiquarks at different lattice sites may also be used. (See
Sects. 6.2.2 and 6.2.3.)
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6.1.2 Meson correlators

So far we have constructed the interpolator OM that corresponds to the oper-
ator ÔM acting in the physical Hilbert space. For the Euclidean correlator we
also need to find the interpolator corresponding to Ô†

M which generates the
meson state from the vacuum. In order to identify this operator we formally
conjugate the interpolator (6.9) (we drop the space–time argument n here),

(
ψ(f1)Γψ(f2)

)†
= −ψ(f2)

†
Γ †ψ(f1)

†
≡ −ψ(f2)γ4Γ

†γ4ψ
(f1) = ±ψ(f2)Γψ(f1) .

(6.10)
The minus sign in the first step comes from the interchange of the Grassmann
variables. In the second step we have used the relation ψ = ψ†γ4 which holds
for the operators in Hilbert space and performed the equivalent replacement
for the Grassmann spinors in our interpolator. The last step in (6.10) reflects
the simple algebraic property γ4Γ †γ4 = ±Γ . Thus, up to a possible overall
sign, the interpolator that corresponds to Ô†

M is obtained by interchanging
ψ’s and ψ’s and ordering the ψ to the left. The sign is irrelevant for the
exponential decay in (6.1). Thus, for mesons we use interpolators

OM (n) = ψ(f1)(n)Γ ψ(f2)(n) , OM (m) = ψ(f2)(m)Γ ψ(f1)(m) , (6.11)

combined in correlators 〈OM (n)OM (m)〉. At the moment the space–time ar-
guments m,n are arbitrary and only later we will set the time arguments to
m4 = 0 and n4 = nt to match the form of the hadron correlator (6.1). In
Sect. 6.1.4 we will discuss what to do with the spatial components m,n.

For evaluating the correlators we have to compute the Grassmann integrals
that appear when calculating the fermionic part 〈. . .〉F of the expectation
value (compare (5.2)). In this step there is an important difference between
the correlators for iso-triplet operators such as (6.2) and (6.5) and correlators
for an iso-singlet operator such as (6.6). For an iso-triplet operator of the form
OT = dΓ u we find (summation convention is used for all indices)

〈
OT (n)OT (m)

〉
F

=
〈
d(n)Γu(n)u(m)Γd(m)

〉
F

= Γα1β1Γα2β2

〈
d(n)α1

c1

u(n)β1
c1

u(m)α2
c2

d(m)β2
c2

〉

F

= −Γα1β1Γα2β2

〈
u(n)β1

c1

u(m)α2
c2

〉

u

〈
d(m)β2

c2

d(n)α1
c1

〉

d

= −Γα1β1Γα2β2 D−1
u (n|m)β1α2

c1c2

D−1
d (m|n)β2α1

c2c1

= − tr
[
ΓD−1

u (n|m)ΓD−1
d (m|n)

]
. (6.12)

In the third line of this equation we have reordered the Grassmann variables
and then used the fact that the fermionic expectation value factorizes with
respect to the flavors: 〈. . .〉F = 〈. . .〉u 〈. . .〉d. Subsequently we applied Wick’s
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m nm n

Fig. 6.1. Connected (left-hand side plot) and disconnected (right-hand side plot)
pieces of a meson correlator

theorem (5.36) for each of the two flavors (compare also (5.54)). This step is
often referred to as fermion contraction.

The Dirac operators Du, Dd for u and d quark differ only by the value
of the mass parameter (compare (5.51)). Often the small difference between
the u and the d quark masses is ignored and one uses Du = Dd, i.e., exact
isospin symmetry. It is, however, important to keep in mind that also in this
case, only Grassmann variables with equal flavor can be contracted with each
other.

The result in the last line of (6.12) has a simple interpretation: The propa-
gator D−1

u (n|m) propagates a u quark from space–time point m to the point n,
while the propagator D−1

d (m|n) transports a d quark in the opposite direc-
tion. Such a contribution is referred to as connected piece and is depicted in
the left-hand side plot of Fig. 6.1. We remark that each of the individual lines
in this figure symbolizes a collection of fermion lines (cf. Fig. 5.1).

In the correlator of an iso-singlet operator OS = (uΓu + dΓd)/
√

2, such
as (6.6), also another type of contribution appears. The fermion contractions
for this correlator are obtained by following the same steps as in (6.12),

〈
OS(n)OS(m)

〉
F

= −1
2

tr
[
ΓD−1

u (n|m)ΓD−1
u (m|n)

]

+
1
2

tr
[
ΓD−1

u (n|n)
]

tr
[
ΓD−1

u (m|m)
]

(6.13)

+
1
2

tr
[
ΓD−1

u (n|n)
]

tr
[
ΓD−1

d (m|m)
]

+ u ↔ d .

The first type of contribution are the connected pieces we have already dis-
cussed. However, one also gets propagators D−1

u (n|n), D−1
u (m|m) which trans-

port a u quark from a space time-point back to the same point. Such terms
are called disconnected pieces and are depicted in the right-hand side plot of
Fig. 6.1. Numerically these contributions need more computational effort and
higher statistics than the connected parts and many studies avoid considering
such mesons or drop the disconnected pieces.

We remark that the interpolator OT,Iz=0 = (uΓu−dΓd)/
√

2 for the Iz = 0
component of the iso-triplet differs from the singlet interpolator only by a
relative minus sign between the u and the d terms (compare (6.5) and (6.6)).
The corresponding correlator is like in (6.13), but with a minus sign in the
third term. In the case of exact isospin symmetry, Du = Dd, the disconnected
pieces cancel. The resulting correlator is the same as for the other members
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of the triplet (compare (6.12)), implying that the masses of all triplet states
are degenerate. In nature this degeneracy is quite accurate, since mπ± = 140
MeV and mπ0 = 135 MeV. The small discrepancy is due to slightly different
masses for u and d quarks and electroweak corrections.

6.1.3 Interpolators and correlators for baryons

Baryons are objects made out of three valence quarks. Baryon interpolators
O with well-defined quantum numbers have to be constructed such that the
corresponding Hilbert space operator Ô in (6.1) projects onto the state we are
interested in. As for the case of mesons we first discuss an example in detail,
the construction of nucleon interpolators, and then address other baryons. A
review on baryon interpolators, going beyond our introductory presentation,
can be found in [2].

The proton p and the neutron n are the Iz = +1/2 and Iz = −1/2 compo-
nents of an iso-doublet (I = 1/2). Their almost degenerate masses of mp = 938
MeV and mn = 940 MeV demonstrate again that isospin is a good symmetry,
as we already stressed for the pion system. The proton has electric charge
Q = e, while the neutron has vanishing charge. Consequently the proton is a
uud state and the neutron is of the type ddu. Due to the facts that the electric
charge is irrelevant in QCD and p and n are strongly related by isospin sym-
metry, usually one does not distinguish between the two and refers to them
simply as nucleons. We discuss only the uud-type interpolator (Iz = 1/2). The
Iz = −1/2 component is obtained by interchanging u and d.

The simplest interpolator for the nucleon N is given by

ON (n) = εabc u(n)a

(
u(n)T

b Cγ5 d(n)c

)
. (6.14)

In this equation we show explicitly only the color indices a, b, c, while for the
Dirac indices we use vector/matrix notation. The transposition T acts on the
Dirac indices and turns the column 4-spinor u(n)b into a row spinor u(n)T

b .
Summing the color indices with the epsilon tensor makes the interpolator
a color singlet and gauge-invariant, as follows from the action of a gauge
transformation on the fermions (2.30) and (3.31).

The term in the parentheses combines a u and a d quark into a so-called
diquark, using the charge conjugation matrix C and γ5. The diquark has
isospin I = 0 and spin J = 0. The notion diquark here serves to discuss
the quantum numbers and no dynamical meaning is implied. Thus the full
interpolator ON has I = 1/2, Iz = +1/2 and J = 1/2 as needed for the nucleon.

The last quantum number we have to discuss is parity, which is P = +1
for proton and neutron. Under the parity transformation P (see (5.72)) our
nucleon interpolator ON (n) transforms as

OP
N (n, n4) = εabc γ4 u(−n, n4)a u(−n, n4)T

b γT
4 Cγ5γ4 d(−n, n4)c

= εabc γ4u(−n, n4)a u(−n, n4)T
b Cγ5 d(−n, n4)c = γ4 ON (−n, n4) , (6.15)
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where in the second step we used γT
µ C = −Cγµ (compare (A.23)). As for

mesons, the change of the spatial vector n into −n is irrelevant when we
project to zero momentum, i.e., when we sum over all n (see Sect. 6.1.4).
The nontrivial transformation of the spinor indices with γ4 can be taken into
account by considering the combinations

ON±(n) =
1
2

(
ON (n) ± OP

N (n)
)

= εabc P± u(n)a

(
u(n)T

b Cγ5 d(n)c

)
, (6.16)

where the parity projectors P± are defined as

P± = 1
2 (1± γ4) . (6.17)

After projection to zero momentum, the interpolators in (6.16) have def-
inite parity P = ±1. The interpolator ON+ describes the positive parity nu-
cleon, while ON− couples to its negative parity partner N(1535) with a mass
of 1535 MeV.

Similar to the steps performed for the meson correlator in (6.10), one finds
that the interpolator for the corresponding creation operator is given by (up
to an overall sign)

ON±(n) = εabc

(
u(n)a Cγ5 d(n)T

b

)
u(n)c P± . (6.18)

Interpolators for other spin-1/2 baryons are obtained by changing the flavor
content. Furthermore, different diquark structures can be considered and we
obtain more general spin-1/2 interpolators:

ON± = εabc P± ΓAua

(
uT

b ΓB dc

)
, ON± = εabc

(
ua ΓB d

T
b

)
uc Γ

A P± ,

OΣ± = εabc P± ΓAua

(
uT

b ΓB sc

)
, OΣ± = εabc

(
ua ΓB sT

b

)
uc Γ

A P± ,

OΞ± = εabc P± ΓAsa

(
sT

b ΓB uc

)
, OΞ± = εabc

(
sa ΓB uT

b

)
sc Γ

A P± ,

OΛ± = εabc P±ΓA
(
2sa

(
uT

b ΓB dc

)
+ da

(
uT

b ΓB sc

)
− ua

(
dT

b ΓB sc

))
,

OΛ± = εabc

(
2
(
uT

a ΓB db

)
sc +

(
uT

a ΓB sb

)
dc −

(
d

T
a ΓB sb

)
uc

)
ΓA P±,(6.19)

where we list the interpolators for nucleon, for the strange Σ (I = 1, S = −1),
Ξ (I = 1/2, S = −2), and Λ (I = 0, S = −1) baryons of both parities. Three
possible choices for the matrices ΓA and ΓB , all giving rise to JP = 1/2

+, are
(ΓA, ΓB) = (1, Cγ5), (γ5, C), or (1, iγ4Cγ5).

Baryons with spin J = 3/2 can be obtained by using (ΓA, ΓB) = (1, Cγj).
The spatial gamma matrix γj gives rise to a diquark with spin J = 1 and
together with the quark outside the diquark the resulting interpolator has
spin J = 3/2 contributions, but also an admixture of spin J = 1/2. For the
details of the necessary projection to definite spin we refer to [2].

Note that all our baryon interpolators OB± and OB± still have an open
Dirac index – they describe fermions after all. Usually this index is summed
over and one considers correlators of the type (α is summed)
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〈
OB±(n)α OB±(m)α

〉
. (6.20)

We conclude with displaying as an example the fermion contractions for
the nucleon interpolator (6.14) (we use P 2

± = P± and vector/matrix notation),
〈
ON±(n)α ON±(m)α

〉
F

= −
〈
ON±(m)α ON±(n)α

〉
F

= −
〈
εabc εa′b′c′

(
u(m)a Cγ5 d(m)T

b

)
u(m)c P± u(n)c′

(
u(n)T

a′ Cγ5 d(n)b′
)〉

F

= εabc εa′b′c′ (Cγ5)α′β′ (Cγ5)αβ (P±)γγ′ D−1
d (n|m)β′β

b′b

× (6.21)
(

D−1
u (n|m)α′α

a′a

D−1
u (n|m)γ′γ

c′c

− D−1
u (n|m)α′γ

a′c

D−1
u (n|m)γ′α

c′a

)
,

demonstrating that for baryons only connected pieces occur.

6.1.4 Momentum projection

There is a final step to be implemented for our hadron interpolators: We want
our hadron states to be states of definite spatial momentum p. Thus we define

Õ(p, nt) =
1√
|Λ3|

∑

n∈Λ3

O(n, nt) e−i a n p . (6.22)

Note that this Fourier transformation runs only over the spatial components n
in the spatial lattice Λ3 = {n = (n1, n2, n3) |ni = 0, 1, . . . , N−1}. Accordingly,
the momenta p are spatial momenta with components pi = 2πki/(aN), ki =
−N/2+1, . . . , N/2. Thus, the interpolator Õ(p, nt) is projected to definite
spatial momentum and is located on a single time slice nt.

It is sufficient to project only one of the two interpolators of a correlation
function to definite momentum, typically the operator O(n, nt) at the sink.
The source operator O(0, 0) can remain in real space and usually is placed
at the origin. That this is sufficient can be seen by writing the real space
interpolator O as a sum of its Fourier components (compare (A.37)) and
using the fact that states with different momenta are orthogonal to each other
such that only the zero momentum term survives. Note, however, that this
is strictly correct only for the exact expectation values, whereas it is only
approximate for a sum over a finite number of configurations.

Thus, according to (1.21), our final formula for Euclidean hadron correla-
tors with definite momentum p reads

〈
Õ(p, nt)O(0, 0)

〉
=

1√
|Λ3|

∑

n∈Λ3

e−ianp
〈
O(n, nt)O(0, 0)

〉

= A e−antE(p)
(
1 + O

(
e−ant∆E

))
, (6.23)

where the energy E(p) is related to the hadron mass mH through the rela-
tivistic dispersion relation (in our units the speed of light is c = 1)
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E(p) =
√

m2
H + p2 (1 + O(ap)) , (6.24)

and for zero momentum we find E(0) = mH .
Determining the hadron propagators for non-zero momenta allows one to

study the spectral relation between energy and momentum as realized on the
lattice. Since the asymptotic states describe free particles in the lattice world,
the adequate spectral relation is that of free lattice particles. It may be ob-
tained, e.g., from the free boson (or fermion) lattice propagator in momentum
space. For the simplest, nearest neighbor discretization one identifies the pole
at momentum (iE(p),p) and finds the relation (mH = E(0))

cosh (aE(p)) = cosh(amH) +
3∑

k=1

(1 − cos(a pk)) , (6.25)

which approaches the continuum relation for vanishing lattice spacing a, cf.
(6.24). Careful analysis of hadron propagators along these lines allows one to
check for the recovery of full Euclidean invariance.

6.1.5 Final formula for hadron correlators

Central for obtaining results to be compared with experiment are the corre-
lation functions of products of fields. For any product of operators, denoted
by A, one has to evaluate

〈A〉 = 〈〈A〉F 〉G =
1
Z

∫
D[U ] e−SG[U ] D[ψ,ψ] e−SF [ψ,ψ,U ] A[ψ,ψ, U ] . (6.26)

The integral over the Grassmann variables can be computed in closed form
(see Chap. 5) and the integral (5.4) over the gauge field remains.

For definiteness let us discuss the example of a propagator for a meson
built out of two quark flavors as in (6.12). After the Grassmann integration
we end up with a ratio of purely bosonic integrals over the gauge fields,

〈
OT (n)OT (m)

〉
= − 1

Z

∫
D[U ] e−SG[U ] det[Du] det[Dd]

× tr
[
ΓD−1

u (n|m)ΓD−1
d (m|n)

]
,

Z =
∫
D[U ] e−SG[U ] det[Du] det[Dd] . (6.27)

We stress again that the fermion determinants depend on U and one has to
perform a Monte Carlo simulation using Z−1 exp(−SG[U ]) det[Du] det[Dd] as
the distribution weight for the gauge fields. This seems to be a straightfor-
ward task at first sight. However, computing the determinant of the Dirac
operator matrix D is highly nontrivial. Remember that this matrix has 12 |Λ|
rows and columns, where |Λ| is the number of lattice sites. This dimension
therefore is typically of the order of millions and a brute force calculation of
the determinant is prohibitively expensive.
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6.1.6 The quenched approximation

Following the first applications of the Monte Carlo method to lattice QCD,
most of the results in the 1980s and 1990s were obtained in the quenched
approximation.3 In particular the successful determination of the ground state
spectrum of hadrons with light quarks is a milestone of this approach.

Before discussing the quenched approximation, let us briefly remind our-
selves of the physical interpretation of the determinant factor. From the hop-
ping expansion discussed in Chap. 5, we found that it may be written as an
effective action, which is a sum over closed loops of gauge field link variables.
In essence it describes the fermionic vacuum where virtual pairs of quarks and
antiquarks are created and annihilated. These quarks are usually called sea
quarks, since they are related to Dirac’s picture of a fermion sea, where the
holes denote anti-fermions. Of course sea quarks are identical to generic quarks
and we only call them such for clarification of the subsequent approximation.

Putting the fermion determinants to unity by hand corresponds to ne-
glecting the effect of the vacuum quark loops (Sect. 5.3.2). Actually, since in
the expansion of the determinant the leading term of the effective action is
a sum over plaquettes, part of the effective action is intrinsically included in
the gauge action by redefining the gauge coupling. This is no problem, since
the gauge coupling itself is a bare parameter and only physical quantities are
of relevance.

Omitting the determinants defines the quenched approximation. Instead
of using the full expression for, e.g., the meson correlator (6.27), one computes

〈
OT (n)OT (m)

〉
quenched

= − 1
Z

∫
D[U ] e−SG[U ] tr

[
ΓD−1

u (n|m)ΓD−1
d (m|n)

]
,

Z =
∫
D[U ] e−SG[U ] . (6.28)

In this approximation one constructs the Markov chain of gauge configurations
as for pure gauge theory (compare Chap. 3) and evaluates the quark propaga-
tors on those configurations. Combinations of the quark propagators build up
the hadron correlators as discussed in the last section. In order to distinguish
these propagating quarks from the sea quarks, and since they are responsible
for the quantum numbers of the hadron, they are called valence quarks. The
quenched approximation is therefore also called valence approximation.

The quenched approximation may be considered as the limit, in which the
sea quarks become infinitely heavy and therefore cannot be generated from
the vacuum as particle–antiparticle pairs. This can be seen from the hopping
expansion for the fermion determinant (5.65). Since the expansion parameter
κ defined in (5.55) vanishes for m → ∞, the determinant becomes 1 in this
limit.

3The terms come from quenching – rapid cooling – of steel, where the carbon
atoms are frozen to their random positions.
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Fig. 6.2. Sample of quark lines contributing in hadron propagation (mesons l.h.s.,
baryons r.h.s.). In the quenched approximation only contributions in the upper two
rows, i.e., without sea quark loops (= closed loops) contribute. The diagrams in
the second row appear in the quenched approximation and resemble the dynamical
diagrams in the bottom rows. They are called hairpin diagrams and give rise to
logarithmic singularities in the quenched approximation

A simulation including the determinant and therefore allowing for the full
dynamical vacuum structure of fermions is called a simulation with dynamical
quarks, in contrast to the quenched simulation. Figure 6.2 gives examples for
contributing quark lines in the quenched and the fully dynamical simulation.

In full QCD there is no difference between sea quarks and valence quarks.
However, in our computer laboratory we may give them different masses.
Such intermediate stages, where the masses of the sea quarks and the valence
quarks differ, are called partial quenching, and are sometimes useful for a
better control of the various systematic uncertainties.

We remark that neither the quenched nor the partially quenched approxi-
mation are proper quantum field theories with a valid Hilbert space construc-
tion and correct positivity properties for the fermions. This leads to some
problems in analyzing in particular the results toward small quark masses.

Forbidding dynamical fermion loops also prevents one from studying res-
onances. However, these provide a conceptual problem anyhow. They are
not asymptotic states of the field theory and one has to introduce intricate
tools for their identification and the determination of scattering amplitudes
in general (cf. Chap. 11). We expect, however, that resonances should in the
quenched case to leading order be observed as bound states at nearby energy
values.

Since dynamical simulations will be treated in Chap. 8, in this chapter
we will show exclusively results for the hadron spectrum in the quenched
situation. Obviously these are of much higher statistical precision than those
obtained from simulations with dynamical quarks, albeit with the intrinsic
uncertainty of the effect of quenching. Special features due to quenching (like
occurrence of extra singularities and ghosts) will be discussed in Sect. 6.4.3.
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We stress, however, that most of the formulas and techniques presented in
this chapter apply to both quenched and dynamical simulations.

6.2 Strategy of the calculation

In this section we discuss techniques for computing and storing the quark
propagators needed for the hadron correlators presented in the last section.
We describe the construction of realistic quark sources which improve the
overlap of the lattice hadron interpolators with the physical states. The prob-
lem of exceptional configurations and its amelioration through smoothing of
the gauge field are addressed.

6.2.1 The need for quark sources

A complete quark propagator is a matrix as large as the fermion matrix itself.
Depending on the lattice action, the Dirac operator may be sparse, with many
vanishing entries, but the propagator D−1 is not and consists of O(1012)
complex numbers. Each entry D−1(n|m)βαba connects a source point (m,α, a)
with a sink point (n, β, b). Here the notion “point” relates to site- as well
as Dirac and color indices. Since the matrix provides the information for
propagation in one particular gauge field configuration, its entries will be
highly correlated and this correlation reduces the information content. So for
two reasons one does not try to store the complete propagator matrix: It is
wasteful to calculate all entries and it would need too much computer memory.

However, if we consider instead just the propagator from a fixed site m0,
a fixed Dirac index α0, and a fixed color index a0, to any site of the lattice,
this is just one column of the inverse Dirac operator,

D−1(n|m0)βα0
ba0

=
∑

m,α,a

D−1(n|m)βα
ba

S(m0,α0,a0)
0 (m)α

a
, (6.29)

where we have introduced the so-called point sources

S(m0,α0,a0)
0 (m)α

a
= δ(m − m0) δαα0 δaa0 . (6.30)

The expression (6.29) must be evaluated for 12 sources, one for each combi-
nation α0, a0 of Dirac and color indices. The point sources are placed at the
position m0 of the source interpolator OH(m0) and the column D−1(n|m0) is
the propagator to the position n of the sink operator OH(n).

Since mesons contain a backward running antiquark (compare Fig. 6.1),
one also needs the propagator in the other direction, i.e., from n to m0. Naively
one would expect that this requires placing sources also at n. However, we
can utilize γ5-hermiticity, as discussed in Sect. 5.4.3, in order to obtain the
backward running propagator for free.
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Using this symmetry property we may write (repeated indices are summed)

γ5 D−1 γ5 = D−1† ⇐⇒ (γ5)αα′ D−1(m0|n)α′β′

c d

(γ5)β′β = D−1(n|m0)
∗
βα
dc

,

(6.31)
and so obtain the backward running propagator. This can, e.g., be used to
write the iso-triplet pion propagator (6.12) as

〈OT (n)OT (m0)〉F = − tr
[
D−1(n|m0)γ5D

−1(m0|n)γ5

]
= −

∑

α,β,c,d

|D−1(n|m0)αβ
cd
|2.

(6.32)
This example shows explicitly that for the pion, and similarly for other mesons,
only the forward propagator D−1(n|m0) needs to be calculated. For baryons
we only need forward propagating quarks anyhow (compare (6.21)).

6.2.2 Point source or extended source?

In order to get clear and strong correlation signals, which allow a reliable
analysis, we have to optimize the interpolating fields. Although any operator
with the correct quantum numbers contributes to the physical state, some may
be more important than others. The overlap can be improved considerably by
providing more realistic spatial wave functions. We present the idea using
a meson interpolator as an example, but the generalization to baryons is
straightforward.

We consider a meson interpolator on a single fixed time slice nt, located
at n0 = (n0, nt). A more general wave function may be introduced by writing

OM (n0) =
∑

n1,n2

F (n0; n1,n2)α1α2
a1a2

ψ(f)(n1, nt)α1
a1

ψ(f ′)(n2, nt)α2
a2

, (6.33)

where we have introduced a distribution function F (n0; n1,n2) which com-
bines field values ψ(n1, nt) and ψ(n2, nt) at spatial positions n1,n2 in the
vicinity of n0. In the simplest case, where the complete interpolator is local-
ized on the single site n0 = (n0, nt), F reduces to

F (n0; n1,n2)α1α2
a1a2

= δ(n0 − n1) δα0α1 δa0a1 Γα0β0 δ(n0 − n2) δβ0α2 δa0a2

⇒ OM (n0) = ψ(f)(n0, nt)α0
a0

Γα0β0 ψ(f ′)(n0, nt)β0
a0

, (6.34)

where Γ is an element of the Clifford algebra.
However, a more realistic wave function can be obtained by choosing a less

trivial function F . In order to be able to work with only one set of 12 sources
one usually uses factorizable functions (α0, β0, a0 are summed)

F (n0; n1,n2)α1α2
a1a2

= S(n0,α0,a0)
i (n1)α1

a1

Γα0β0 S(n0,β0,a0)
k (n2)∗α2

a2

. (6.35)
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We have introduced the subscripts i and k to indicate that the source functions
for ψ and ψ may differ. Using the form (6.35) one can rewrite (6.33) in terms
of so-called smeared fermions. To indicate the type of source we mark the
smeared fermions with a lower index i or k, respectively:

ψ(f ′)
k (n0, nt)α0

a0

≡
∑

n2

Sk
(n0,α0,a0)(n2)∗α2

a2

ψ(f ′)(n2, nt)α2
a2

,

ψ
(f)
i (n0, nt)α0

a0

≡
∑

n1

Si
(n0,α0,a0)(n1)α1

a1

ψ(f)(n1, nt)α1
a1

. (6.36)

This form makes it obvious that the smeared field at n0 is combined from the
original fields at positions ni. The meson operator in terms of the smeared
fermions becomes simply (this is (6.34), but now for smeared fields):

OM (n0) = ψ
(f)
i (n0, nt)α0

a0

Γα0β0 ψ(f ′)
k (n0, nt)β0

a0

. (6.37)

Introducing these smearing functions for sources Si, located at m0, and sinks
Sk, located at n0, leads to the smeared quark propagator

Gki(n0|m0)β0α0
b0a0

≡
〈
ψ(f)

k (n0)β0
b0

ψ
(f)
i (m0)α0

a0

〉

F

(6.38)

=

〈
∑

m,n

Sk
(n0,β0,b0)(n)∗β

b

ψ(f)(n)β
b
S(m0,α0,a0)

i (m)α
a
ψ(f)(m)α

a

〉

F

=
∑

n,m

Sk
(n0,β0,b0)(n)∗β

b

(
D−1

f

)
(n|m)βα

ba
S(m0,α0,a0)

i (m)α
a

.

In the construction of the meson and baryon correlators, as discussed in
Sect. 6.1, one now simply replaces the original quark propagator D−1

f by the
smeared propagator Gki. In an actual numerical calculation one computes the
propagator from a smeared source Si to a point-like sink according to

∑

m,α,a

D−1(n|m)βα
ba

S(m0,α0,a0)
i (m)α

a
. (6.39)

The smearing of the sink can then be done in the subsequent construction of
the hadron propagators by applying the smearing operator presented in the
next subsection.

6.2.3 Extended sources

For smearing functions S that are not gauge-covariant, one has to fix the gauge
in the time slice using the methods from Sect. 3.2. Various source shapes have
been used in that context. The extreme among those is a source constant in a
time slice, the so-called wall-source. Attractive are Gaussian shapes motivated
by intuition. The final incentive always is the optimization of the signal.
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A gauge-covariant source, with a shape similar to a Gaussian, is obtained
by Jacobi smearing [3, 4]. One acts with a smearing operator M on the point
source S0 of (6.30) in time slice nt to obtain the smeared source:

S(n0,α0,a0) = M S(n0,α0,a0)
0 , M =

N∑

n=0

κn Hn . (6.40)

The operator H is essentially the spatial part of the Wilson term (5.50) with-
out the constant piece (nt is fixed to the time slice of the source),

H(n,m) =
3∑

j=1

(
Uj(n, nt) δ(n + ĵ,m) + Uj(n − ĵ, nt)† δ(n − ĵ,m)

)
.

(6.41)
Note that H and therefore also M are hermitian and act only on the color
indices, but are trivial in Dirac space. The operation connects different sites
of the time slice to the central site with gauge transporters. Jacobi smearing
has two free parameters: the number of smearing steps N and the positive real
parameter κ. These two parameters can be used to adjust the profile (width)
of the source. Also combining quark sources of different widths has proved to
be efficient for optimizing the hadron propagation signals (cf. Sect. 6.3.3).

6.2.4 Calculation of the quark propagator

Having prepared our sources S, we need to compute the propagator D−1 act-
ing on the source according to (6.39), i.e., we need G = D−1S. Put differently,
one has to solve the system of equations

D G = S , (6.42)

where D is the Dirac matrix operator, S the source vector, and G the unknown
propagator vector. This can be done using iterative methods. In order to get
acquainted with that approach let us briefly discuss the grandmother of those
algorithms: As shown in the discussion of the hopping expansion (compare
(5.57)), after rescaling the fermions we may split D into a constant part and
a nontrivial term,

D ≡ 1− Q . (6.43)

Then a series expansion

G = (1− Q)−1 S = (1 + Q + Q2 + Q3 + . . .)S (6.44)

leads to the iteration prescription

G(0) = S , G(i+1) = S + QG(i) . (6.45)

This is the simple Jacobi iteration which converges when the largest eigen-
value of Q is smaller than 1 in magnitude. In each iteration step one only has
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to apply the matrix Q to the vector G(i) and add S until convergence is ob-
tained. Relaxation methods like the Gauss–Seidel method interpolate between
subsequent steps and may improve convergence. Both methods belong to the
class of stationary methods which solve for each of the variables locally, by
keeping the current values of the other variables fixed. Other variants de-
rived from the Gauss–Seidel method, but converging an order of magnitude
faster, are the SOR (successive overrelaxation) and SSOR (symmetric SOR)
methods, which introduce extrapolation parameters [5].

Most calculations, however, use a variant of the conjugate gradient (CG)
method [5, 6]. This is a so-called non-stationary method and the concept
is to iteratively minimize a quadratic functional, equivalent to finding the
solution of the system of equations. For real symmetric, positive definite N×N
matrices A the function

Q(x) =
1
2

xT Ax − xT b (6.46)

is (up to a constant) a positive definite quadratic form assuming its minimum
at x∗, where its gradient vanishes,

∂Q(x)|x∗ = Ax∗ − b = 0 . (6.47)

Thus x∗ is the solution of the system Ax = b. The CG method works by
iteratively constructing search direction vectors p(i) and iterates x(i) such
that in each step Q(x(i) + αi p(i)) is minimized as a function of the real
parameter αi, leading to the next iterate x(i+1) = x(i) + αi p(i). The vectors
p(i) are orthogonal to Ap(i−1) (and all previous Ap(j)) sequentially build up a
vector space K(i) = span(p(0), . . . , p(i)), which is called a Krylov subspace. All
variants of the CG method are based on such an implicit construction of an
orthogonal basis for the Krylov subspace. Methods like the Lanczos algorithm
for finding the eigensystem of a matrix work with this concept as well and the
corresponding iteration may be related to the CG iteration [5].

The iterates x(i) minimize Q in the spaces K(i) and approach the solution
vector x∗ in at most N steps. However, often much fewer steps give sufficiently
accurate results. This may be checked by computing the norm ‖Ax(i)−b‖, and
the process is terminated once the norm is smaller than the requested accuracy
ε. Only scalar products between vectors and matrix–vector multiplications
have to be computed and only vectors have to be kept in storage. Both are
important advantages for the large, but often sparse, matrices associated with
the Dirac operators.

In its original version CG works only for positive definite symmetric ma-
trices A. However, for non-symmetric matrices the residual vectors cannot be
made orthogonal within these limitations. The Dirac operator D is not posi-
tive definite hermitian; it has complex eigenvalues. For non-symmetric, general
matrices a variant called Bi-Conjugate Gradient (Bi-CGR) does the job. There
two sequences of search directions and residual vectors are generated, which
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Table 6.2. Pseudocode [5] for the Bi-CGStab algorithm with preconditioning matrix
M . For no preconditioning set M = 1 and simplify the code

r(0) = b − A x(0)

r̃ = r(0) (for example)
for i = 1, 2 . . . iterate :

ρi−1 = r̃† · r(i−1)

if ρi−1 equals 0, the method fails.
if i = 1 then

p(1) = r(0)

else
βi−1 = αi−1 ρi−1/ (ωi−1 ρi−2)

p(i) = r(i−1) + βi−1

(
p(i−1) − ωi−1 v(i−1)

)

end if
solve M p̂ = p(i)

v(i) = A p̂

αi = ρi−1/
(
r̃† · v(i)

)

s = r(i−1) − αi v(i)

if the norm of s is small enough, set x(i) = x(i−1) + αi p̂ and stop.
solve M ŝ = s
t = A ŝ
ωi = t† · s/

(
t† · t

)

r(i) = s − ωi t
x(i) = x(i−1) + αi p̂ + ωi ŝ

repeat until convergence . . .

obey a bi-orthogonality relation. Even better, improving convergence prop-
erties, the so-called Bi-CGR Stabilized (Bi-CGStab) method [7] and another
improvement, Bi-CGStab(2) by [8], have been introduced. For details we refer
to the original papers and to [5].

We remark that one could utilize D−1 = D†(D D†)−1 and apply an al-
gorithm for hermitian matrices to compute (D D†)−1. Furthermore, for γ5-
hermitian Dirac operators one could also invert the hermitian matrix Dγ5

and use D−1 = γ5(Dγ5)−1. In practice, however, it turned out that the strat-
egy of using an algorithm for hermitian matrices does not necessarily lead to
faster convergence.

Here we discuss only the Bi-CGStab algorithm along the lines of [5]. In or-
der to solve the matrix equation (6.47) for the unknown vector x∗, one starts
with a guessed vector x(0). The pseudo-code for the iteration with precondi-
tioning (see below) then may be written as in Table 6.2. For the application
of Bi-CGStab to our problem (6.42), one sets A = D, b = S, and obtains the
desired propagator vector G = D−1S as G = limi→∞ x(i).

We remark that r̃ remains constant and one may also choose other r̃,
as long as ρ0 $= 0. For repeating the iteration one needs ωi $= 0 (the
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Bi-CGStab(2) algorithm helps in this respect [8]). One stops the iterations
as soon as r(i)† · r(i) < ε for some requested accuracy ε. The algorithm needs
two matrix–vector multiplications with A, two inversions of the preconditioner
M , and four inner products for each iteration step.

For the simple CG algorithm convergence is guaranteed for positive definite
symmetric matrices, at least after N steps for matrices of dimension N , but
usually significantly faster. For Bi-CGStab convergence may be faster than
that of other CG methods, but not necessarily, and in some cases it even
breaks down. Other starting values or other methods have to be chosen in
such situations.

So-called preconditioning methods sometimes allow one to accelerate the
convergence, depending on the Dirac operator. A preconditioner is a suitable
matrix M which we use to transform the system to

M−1 Ax = M−1 b . (6.48)

Let us assume that we have a matrix M , which is numerically cheap to invert,
i.e., to solve M ŝ = s for ŝ, and which approximates A in some way. Then
the spectral properties of M−1 A may be more favorable, allowing faster con-
vergence of the iterative solution. This may be true in particular, if the small
eigenvalues of M agree with those of A. For a more complete discussion of
such methods cf. [5, 9].

When inverting the Dirac operators for different quark masses, the ma-
trices differ just by a constant in the diagonal. One then can simultaneously
solve the set of equations for a set of quark masses with little extra cost. The
rate of convergence is determined by the convergence for the smallest mass.
Such a multi-mass algorithm has been discussed in [10, 11].

Since the determination of the quark propagators is numerically quite ex-
pensive, one often stores these for each gauge configuration sampled and com-
putes various hadron observables from them in the later analysis.

6.2.5 Exceptional configurations

So far we have not taken into account the Dirac operator matrix D[U ] which
depends on the gauge field U . This implies that the properties of D[U ] will
change as one changes U . In particular, certain fluctuations of the gauge field,
so-called exceptional configurations, lead to small eigenvalues of D[U ] which
make the numerical inversion of D[U ] problematic.

To understand this phenomenon in more detail let us consider the eigen-
values of D[U ]. For quarks with bare mass parameter m they are given by

m + λi[U ] , (6.49)

where λi[U ] are the eigenvalues of the massless Dirac operator. In general these
are complex numbers, but also real eigenvalues λi[U ] = ri[U ] are possible. If
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such a real eigenvalue becomes negative and in magnitude similar to m, then
the Dirac operator has a very small eigenvalue. In this case the numerical
inversion of D[U ] breaks down, and only increasing the quark mass m resolves
the problem. Thus the exceptional configurations limit the quark masses one
can reach. For example in quenched simulations with Wilson fermions it turns
out that in a typical simulation4 (e.g., for lattice size 323×64) the quark mass
has to be chosen large enough such that the pion mass is at least 300 MeV
instead of the physical 135 MeV.

We remark that for chiral fermions, where the Dirac operator obeys the
Ginsparg–Wilson equation, a concept which we discuss in Chap. 7, the real
eigenvalues do not fluctuate and the problem with exceptional configurations
does not occur; therefore realistic pion masses can be reached. Also introduc-
ing a twisted mass term (see Chap. 10) solves the problem with exceptional
configurations, since it expels the spectrum from a strip along the real axis.

In practical simulations one finds that the fluctuations of the eigenvalues
are coupled to the fluctuations of the gauge field. These fluctuations can be
damped by either using improved gauge field actions (see Chap. 9), larger
lattices, or by smoothing techniques which we discuss in the next subsection.

6.2.6 Smoothing of gauge configurations

When aiming for correlation functions one is mainly interested in the long
distance behavior. On the other hand, typical for gauge theories are violent
short distance fluctuations of the gauge field. One can considerably improve
the correlation signal by smoothing or smearing the gauge field, either only in
the time slices or even in space and time. This also helps with the exceptional
configurations discussed in the preceding subsection.

When smoothing or smearing one typically replaces the link variables by
local averages over short paths connecting the link’s endpoints. This is a gauge
covariant procedure and one does not have to fix the gauge. The operators
and propagators are then constructed on the smeared configurations. As long
as the smearing is local enough, i.e., the smearing operator combines only
a fixed number of links, the long distance correlation signals should not be
affected in the continuum limit.

Smearing algorithms are all averaging products of links along certain paths
connecting the endpoints of a given link. For SU(2) this average is proportional
to a group element, but for SU(3) this is not the case. Therefore one has to
project the average to an SU(3) matrix. We briefly mention here only three
variants of such smearing algorithms.

APE smearing [12]: In that case the average is over the original link Uµ

and over the six perpendicular staples (visualize!) connecting its endpoints,

4Theoretical arguments show that only for κ < 1/8 one can be sure that there
are no exceptional configurations.
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Vµ(n) = (1 − α)Uµ +
α

6

∑

ν &=µ

Cµν(n) ,

Cµν(n) = Uν(n)Uµ(n + ν̂)Uν(n + µ̂)†

+Uν(n − ν̂)† Uµ(n − ν̂)Uν(n − ν̂ + µ̂) , (6.50)

where the real parameter α may be adjusted depending on the gauge cou-
pling. The projection of the sum to SU(3) is usually done by maximizing
Re tr

[
X Vµ(n)†

]
for X ∈ SU(3) and using X as new link variable U ′

µ(n).

HYP smearing [13]: In that approach the average is over paths lying
within the hypercubes containing the link variable. Again the sum has to be
projected to SU(3).

Stout smearing [14]: This method uses a particular way of projection,
defining the new link after a smearing step by

U ′
µ(n) = ei Qµ(n) Uµ(n) . (6.51)

Qµ(n) is a traceless, hermitian matrix constructed from staples,

Qµ(n) =
i
2

(
Ωµ(n)† −Ωµ(n) − 1

3
tr

[
Ωµ(n)† −Ωµ(n)

])
,

Ωµ(n) =




∑

ν &=µ

ρµν Cµν(n)



 Uµ(n)† . (6.52)

The Cµν are the same as in (6.50) and the real weight factors ρµν are tunable
parameters. Common choices are taking them constant, ρµν = ρ, or smearing
only the spatial links: ρµ4 = ρ4µ = 0, ρnm = ρ. The new links have gauge
transformation properties like the original ones. This approach of getting an
SU(3) element from a sum of matrices may be used for other combinations
of paths too, of course. The advantage of stout smearing is that U ′

µ(n) is
differentiable with respect to the link variables. This is a prime benefit in
applications like the hybrid Monte Carlo method for dynamical fermions dis-
cussed in Chap. 8.

Such link smearing methods lead to what is often called a fat link for
obvious reasons. There is a variety of other such suggestions, among them the
FLIC link [15] or differentiable variants of the HYP smearing [16, 17].

All such smearing steps can be iterated. However, the smearing then affects
not just neighboring variables but extends over increasingly larger distances.
Eventually the asymptotic behavior of the propagators will be affected render-
ing such results problematic. Anyway, most of the positive effect of smearing
is achieved already after the first smearing step(s).

6.3 Extracting hadron masses

Once the quark propagators are computed as described in the last section,
they can be combined to the hadron correlators discussed in Sect. 6.1. From
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these correlators one can extract the corresponding hadron masses and in this
section we present the techniques necessary for this step.

In spectroscopy calculations we analyze hadron correlators of the form
(6.1). In these formulas energies E, masses m, and momenta p always come
with a factor of the lattice constant a, making the products aE, am, and
ap dimensionless. It is convenient to drop the factor of the lattice con-
stant and use so-called lattice units. In lattice units (6.1) assumes the form
(6.53) below. For going back to physical units, an energy E has to be re-
placed by aE, and equivalently for masses and momenta (see Sect. 6.4.2).
Unless stated otherwise, from now on we use lattice units for masses and
energies.

6.3.1 Effective mass curves

In the analysis of the mass spectrum one studies the correlation function of
an operator Ô with the quantum numbers of a particular hadron or set of
hadrons. However, these operators usually do not create eigenstates of the
Hamiltonian. They have contributions from several eigenstates and the cor-
relation function is the spectral sum (1.21), discussed in Chap. 1. If the sink
operator is projected to zero momentum (by summation over the respective
time slices) we find

C(nt) ≡
〈
Õ(0, nt)O(0, 0)

〉
=

∑

k

〈0|Ô|k〉〈k|Ô†|0〉 e−nt Ek . (6.53)

For finite lattice size the values Ek are discrete. If the operators couple to single
particle intermediate states, the masses mk of those particles will correspond
to the low-lying energy values, i.e., Ek = mk. If the operators couple to two- or
more-particle intermediate states, the energy values Ek are related to masses
and relative momenta of the involved particles.

Due to the exponential form of the terms in the sum (6.53), the relative
contribution of higher lying energy states varies with nt. Only for large nt the
lowest energy state dominates. For smaller nt the mixing with other states
blurs the picture and the sum (6.53) has many relevant contributions,

C(nt) = A0 e−nt E0 + A1 e−nt E1 . . . . (6.54)

In Sect. 6.3.3 we will discuss methods to analyze the case when more than one
energy level has to be determined. For the moment let us consider the simplest
situation where one is interested only in the lowest energy E0 corresponding
to the ground state.

The left-hand side plot of Fig. 6.3 shows an example for the correlation
function of a mesonic operator with the quantum numbers of the pion in a
sample calculation. The linear regions in the log-plot correspond to the range
of nt-values where a single exponential behavior ∼ exp(−nt E0) dominates.



6.3 Extracting hadron masses 145

0 5 10 15 20 25 30
nt

100

10–2

10–4

10–6

C(nt)

m = 0.02
m = 0.05
m = 0.10
m = 0.20

m = 0.02
m = 0.05
m = 0.10
m = 0.20

0 5 10 15 20 25 30
nt

0.0

0.2

0.4

0.6

0.8

1.0

1.2

meff

Fig. 6.3. Result of a Monte Carlo simulation on a 163 ×32 lattice at lattice spacing
a ≈ 0.15 fm. L.h.s.: log-plot for the pion correlation function; r.h.s.: effective mass
plot (in lattice units). The different sets correspond to different values of the quark
mass in lattice units. The points are connected to guide the eye

For mesons propagation in nt and (NT −nt) is identical up to a possible rela-
tive minus sign and, when only the ground state is considered, the correlator
shows (depending on source and sink interpolators) a cosh- or sinh-dependence
on nt:

A0 e−nt E0 ± A0 e−(NT −nt) E0 =
{

2A0 e−NT E0/2 cosh ((NT /2 − nt)E0)
2A0 e−NT E0/2 sinh ((NT /2 − nt)E0)

.

(6.55)
In order to analyze in which range of nt the contribution of the sub-leading

exponentials in (6.54) can be neglected, one defines an effective mass as

meff

(
nt + 1

2

)
= ln

C(nt)
C(nt + 1)

. (6.56)

Once the correlator C(nt) is dominated by the ground state energy, meff be-
comes constant and forms an effective mass plateau at meff = E0.

If one wants to respect periodicity in nt according to (6.55), one sets

C(nt)
C(nt + 1)

=
cosh (meff(nt − NT /2))

cosh (meff(nt + 1 − NT /2))
, (6.57)

(and equivalently for the case of sinh) and solves for meff at each nt. This
was done in the right-hand side plot in Fig. 6.3. Depending on the mass, such
modifications due to periodicity effects may not be necessary if one stays away
from the region nt 0 NT /2.

In the right-hand side plot of Fig. 6.3 the effective mass plateaus are well
pronounced for 4 < nt < 28. In this range the contribution of excited states
can be neglected and a two-parameter fit to the simple form A0 exp(−nt E0)
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can be performed. If the correlator is symmetric, as in our example, then one
fits to A0 cosh((nt − NT /2)E0).

A generalization of effective mass techniques is combining correlation func-
tion values from different time slices subtracting the leading exponential decay.
This may be extended to a tool for extraction excited hadron masses [18].

We stress that the symmetry of correlators, i.e., equal propagation in nt

and NT − nt up to a sign, is not a general feature. In particular, after projec-
tion to definite parity (see (6.16)) a baryon propagates in nt, while its parity
partner propagates in NT − nt. Since the two masses are different, the prop-
agator is not symmetric, and instead of cosh or sinh, the simple exponential
form has to be used for effective masses and the fit function.

6.3.2 Fitting the correlators

Although plotting meff gives a first estimate of the ground state mass, a cor-
related fit in a range of nt values should be performed. For the correlated
analysis one fits the data in a range nmin ≤ nt, n′

t ≤ nmax by minimizing

χ2 =
nmax∑

nt,n′
t=nmin

(C(nt) − f(nt)) w(nt, n
′
t) (C(n′

t) − f(n′
t)) , (6.58)

with regard to the parameters A0, E0 of the hypothesis function

f(nt) = A0 e−E0 nt or f(nt) = A0 cosh ((nt − NT /2)E0) (or sinh) .
(6.59)

The weight w ideally should be the inverse of the exact covariance matrix,
i.e., w(nt, n′

t) = Cov−1(nt, n′
t). In actual Monte Carlo runs one only knows an

estimator, i.e., the measured covariance matrix of the data,

CovN (nt, n
′
t) =

1
N−1

〈 (C(nt) − 〈C(nt)〉N ) (C(n′
t) − 〈C(n′

t)〉N ) 〉N , (6.60)

where 〈. . .〉N denotes the statistical average over N gauge configurations. In
(6.58) one thus uses w(nt, n′

t) = Cov−1
N (nt, n′

t).
However, this estimator is often too badly determined and due to statistical

fluctuations there may be accidental small eigenvalues destabilizing the fit. In
such a case often either some smooth approximation or just the diagonal part
of the covariance matrix (neglecting the correlation between different data
points) are used. The latter gives rise to w(nt, n′

t) = δnt,n′
t
/σ(nt)2 and the

χ2-functional of (6.58) reduces to the form familiar from uncorrelated fits.
For a critical account of correlated fits, see [19].

One method to determine the fit range [nmin, nmax] in (6.58) is the analysis
of effective mass plateaus discussed above. Another criterion is to require that
the χ2 per degree of freedom of the fit does not change by more than O(1)
when the region is extended. Although a generally valid way to determine
the fit interval is desirable, often – in particular for data with only moderate
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statistics – it is affected by individual prejudice. Any such decision involves
some arbitrariness and should be checked by visual inspection of the fits.

A simple method to estimate the statistical error of the fit result for the
mass is to use the statistical bootstrap or jackknife methods. One repeats the
analysis for large subsets of the data and determines the final error of the
mass a posteriori, as discussed in Chap. 4.

6.3.3 The calculation of excited states

In particular at smaller time distances one observes the contribution of states
with energies higher than that of the ground state (see the right-hand side
plot of Fig. 6.3). Obviously it is desirable to get an estimate of these energy
levels corresponding to excited states. At the same time, disentangling ground
states from higher states provides cleaner signals for both.

A direct fit of the correlation function to a hypothesis function f(nt) which
is a sum of K exponentials,

f(nt) =
K∑

k=1

ck e−nt Ek , (6.61)

would formally work, if the number of parameters were smaller than the num-
ber of data points and if the data C(nt) were exact. In reality the data result
from Monte Carlo simulations and do have errors. It can be easily demon-
strated that already a sum of three exponentials may lead to unreliable re-
sults in such fits. Several alternative approaches have been discussed in the
literature.

Bayesian analysis (conditionally biased fits): In order to stabilize
the fit to a hypothesis function of the type (6.61), one does not use the χ2

functional (6.58), but instead one minimizes

F = χ2 + λφ , (6.62)

where φ is some stabilizing function of the fit parameters and λ a positive real
multiplier. This technique is well known for so-called ill-posed problems like
analytic continuation of functions given only by data points [20].

In [21] it has been proposed to use as the stabilizing function

φ =
K∑

k=1

(
ak (Ek − Êk)2 + bk (ck − ĉk)2

)
, (6.63)

where Êk and ĉk are prejudices for the expected energy values and coeffi-
cients. Adjusting the parameters ak and bk determines the relative weight for
the corresponding bias. The fit is thus stabilized, even if the number of fit
parameters exceeds the number of data, leading to unique results depending
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on the multiplier λ, which defines the “amount of prejudice”. One tries to find
regions for the resulting fit parameters that depend only weakly on λ.

One technique based on such ideas [22] has been to start with simple one-
exponential fits at large-nt values, then continue with two-exponential fits
including the result of the earlier fit as a bias along the lines discussed. Expe-
rience shows that one usually needs good statistics (small statistical errors of
the data) in order to successfully employ that method.

Maximum entropy method: For this approach one writes the correla-
tion function as the Laplace transform of a spectral density,

C(nt) =
∫ ∞

0
dE ρ(E) e−nt E . (6.64)

In the continuum the resulting spectral density ρ(E) should exhibit peaks
near the energy values dominating the correlation function. When computing
ρ(E) from lattice data, one discretizes the energy in small steps, En = n∆E,
and uses the values ρ(En) of the density at the discrete energies En as fit
parameters. The technical challenge is to recover the spectral density from
the (few) values of C(nt) by minimizing a suitable distance functional (6.62).
Various approaches to define the stabilizing functional φ have been used.

In the maximum entropy method the functional φ in (6.62) is chosen based
on probabilistic arguments. We normalize the spectral density according to

C(0) =
∫ ∞

0
dE ρ(E) ≡ 1 . (6.65)

Then ρ(E) should be distributed such that each “quantum” has the same a
priori chance to contribute to the energy value E. This leads to the stabilizer

φ[ρ] =
∫ ∞

0
dE ρ(E) ln (ρ(E)) . (6.66)

Minimizing the joint probability leads to a smooth solution. A drawback is
that in this method the spectral density has to be positive. Also, the functional
is non-linear and dedicated numerical methods have to be used to solve the
minimization problem.

This approach is heavily used in statistical physics. It also has been applied
to nucleon propagators [23, 24]. From experience with statistical physics it
is expected, however, that one needs data for many values of nt and with
very small errors for a reliable result. Sample calculations show significant
ambiguities when one tries to extract more energy levels from moderately
precise correlation data.

Variational analysis: The situation concerning excited states can be
improved by considering not only a single correlator, but by computing a
matrix of cross correlators

Cij(nt) ≡
〈
Õi(0, nt)Oj(0, 0)

〉
=

∑

k

〈0|Ôi|k〉〈k|Ô†
j |0〉 e−nt Ek , (6.67)
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for a set of N basis interpolators Oi, i = 1, . . . , N , all with the quantum
numbers of the state one is interested in. Different interpolators can, e.g., be
constructed by using different Dirac structures as discussed in Sect. 6.1, or
with quark propagators acting on different quark sources.

Utilizing the special form of the spectral decomposition on the right-hand
side of (6.67) it has been shown [25–27] that diagonalizing the cross-correlation
matrix C(nt) allows to disentangle the physical states to some amount.
Indeed the eigenvalues λ(k)(nt) of the correlation matrix can be shown to
behave as

λ(k)(nt) ∝ e−nt Ek
(
1 + O(e−nt ∆Ek)

)
, (6.68)

where ∆Ek is the distance of Ek to nearby energy levels. Even better results
can be obtained when using the generalized eigenvalue equation

C(nt)v = λ(nt)C(n0)v , (6.69)

where the eigenvalues behave again as in (6.68), but the amplitude of the
correction term is typically smaller. The generalized eigenvalue problem (6.69)
may be rewritten as

Q(n0)−1 C(nt)Q†(n0)−1 u = λ(nt)u with Q(n0)Q†(n0) = C(n0) . (6.70)

Numerically this form is expected to be more stable than diagonalizing
C(n0)−1 C(nt), which is another way of rewriting the generalized eigenvalue
problem as a regular eigenvalue problem.

In the generalized eigenvalue problem the normalization at some time slice
n0 < nt ought to improve the signal by suppressing the contributions from
higher excited states. Indeed that effect can be observed in sample calculations
using model data: Both approaches, the straightforward diagonalization, as
well as the generalized eigenvalue problem, give the correct answers asymp-
totically, but the generalized eigenvalue approach does so already at smaller
distances nt.

The method improves when the number of basis interpolators is increased.
These should be independent and have good overlap with the eigenstates of
the problem. On the other hand, in realistic calculations, including more in-
terpolators enhances the statistical noise and thus affects the diagonalization.
It always pays off to choose lattice operators which are close to the expected
physical content of the eigenstates.

The eigenvectors of the problem give the overlap of the eigenstates, sup-
posedly the states close to the physical states, with the basis interpolators
used in the correlation matrix (6.67). Thus, one may derive information
on the wave function of the physical modes. In [28–30] lattice operators
have been obtained by combining Jacobi smeared quark sources of differ-
ent widths thus allowing for nodes in the spatial wave function. A different
approach is followed in [31, 32] where extended lattice interpolators are con-
structed using irreducible representations of the symmetry group of a cubic
lattice.
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6.4 Finalizing the results for the hadron masses

Now we are at a stage where the hadron masses have been extracted from the
corresponding correlators and are ready for analysis. We discuss the necessary
steps for finalizing the spectroscopy calculation and illustrate them using data
from quenched calculations.
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Fig. 6.4. Raw data for hadron masses. The left-hand side plot shows pion, ρ, and
nucleon masses in lattice units as a function of the bare quark mass. The right-hand
side plot is a so-called APE plot where dimensionless ratios are compared to the
experimental number. The data are taken from the quenched calculation [33]

6.4.1 Discussion of some raw data

Following the steps of the last sections we have computed hadron masses in
lattice units, i.e., we have obtained numbers for the dimensionless products
aM . Usually, the hadron masses are evaluated for a range of light quark masses
mq ≡ mu = md. The left-hand side plot in Fig. 6.4 shows such raw data for
pion, ρ, and nucleon masses from a quenched simulation [33].

Converting masses in lattice units to numbers, that can be compared to
experimental data, can be done by considering ratios of masses where the
lattice constant a cancels. The right-hand side plot in Fig. 6.4 shows MN/Mρ,
the ratio of nucleon to ρ mass, as a function of (Mπ/Mρ)2, where Mπ is the
pion mass. Such a plot is called APE plot [34]. An alternative is the so-called
Edinburgh plot [35], where one uses Mπ/Mρ on the horizontal axis.

In both, APE and Edinburgh plots, the data for MN/Mρ can be compared
to the physical point, MN/Mρ ≈ 1.209 at Mπ/Mρ ≈ 0.180. Although we
do not perform an extrapolation, it is obvious that the data shown in the
APE plot of Fig. 6.4 clearly extrapolate to the physical point already in the
quenched approximation.
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6.4.2 Setting the scale and the quark mass parameters

The results of a lattice calculation are always dimensionless numbers like, e.g.,
mass ratios. In order to compare with the experiment, one has to relate a mass
or length unit to an experimental value. Consequently, the data have to be
converted to physical units such as MeV. In other words, one has to determine
the physical value of the lattice constant a in order to obtain a mass M from
the calculated number for aM . There are two main techniques for this step
called scale setting.

Setting the scale with the Sommer parameter: For this approach
one uses the Sommer parameter to determine the lattice constant a from the
static potential as discussed in Sect. 3.5. The result has the form a = x fm,
where x is a dimensionless number.

From our hadron correlators we have computed the dimensionless number
X = aM for some hadron mass M . Consequently the physical mass M = X/a
is given in inverse fm. This mass unit is a consequence of using natural units
! = 1, c = 1. For converting this result to MeV one uses

1 = ! c = 197.327MeV fm ⇒ 1 fm−1 = 197.327MeV . (6.71)

For the hadron mass in MeV we then obtain

M =
X

a
=

X

x
fm−1 =

X

x
197.327MeV . (6.72)

Setting the scale with a hadron mass: In this approach one uses
one of the hadron masses M0 for setting the scale. Popular candidates are
the ρ meson or the nucleon. For that hadron, e.g., the ρ-meson, the mass
in lattice units, aM0(mq), has to be known at several values of the bare
quark mass mq. One then extrapolates the data to the value m∗

q of the mass
parameter, where the dimensionless pion to ρ mass ratio assumes its physical
value, Mπ(m∗

q)/Mρ(m∗
q) = M exp

π /M exp
ρ = 0.180. Alternatively one may also

extrapolate aM0(mq) to the chiral limit, i.e., to mq = 0. This is only an
approximation for the true physical point, but on the other hand this choice
avoids the statistical error due to the measured pion to ρ mass ratio. For both
extrapolations the result is a number X = aM0(m∗

q) (or X = aM0(0)), and we
identify M0(m∗

q) ≡ M exp
0 (or M0(0) ≡ M exp

0 ), where M exp
0 is the experimental

mass of our hadron in MeV. One obtains the lattice constant in inverse MeV:
a = X/M exp

0 . This scale a can be directly used to obtain other masses M in
MeV from the values aM in lattice units.

For simulations with three quark flavors, in addition to the scale a, also the
light quark mass mq = mu = md and the strange quark mass ms have to be
determined. For the light quark mass one either identifies the physical point
by setting mq = m∗

q , with m∗
q determined as discussed above, or alternatively

one assumes that the light u and d quarks are massless. For setting the strange
quark mass, a similar strategy is applied: One uses a hadron containing the
strange quark, typically the K± pseudoscalar meson, the vector meson φ, or
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baryons like Σ or Ω. The K± has quark content u, s and thus its mass is
a function of the u and s quark masses, MK±(mq,ms) with mq = mu. In a
first step the data are extrapolated either to the chiral limit, mq = 0, or to
mq = m∗

q . This gives the K± mass MK±(ms) at different values of the strange
quark mass (the scale is set with one of the methods discussed above). This
is done for several values of ms and the data for MK±(ms) are interpolated.
The value m∗

s, where the interpolated data coincide with the experimental
value, MK±(m∗

s) = M exp
K± = 494 MeV, gives the bare strange quark mass

parameter ms = m∗
s. When using the φ, the situation is even simpler, since

φ is predominantly a strange–antistrange state and no chiral extrapolation is
needed.

6.4.3 Various extrapolations

Analyzing lattice data one faces the notorious, three-fold group of problems:

• Finite size effects and infinite volume limit V → ∞.
• Scaling in the continuum limit a → 0.
• Chiral extrapolation m → 0.

Finite size: All numerical lattice results are obtained in finite volumes.
At fixed other parameters one therefore has to study the dependence on the
lattice size and, if possible, extrapolate to infinite spatial volume. For the
extrapolation one may either use a naive parameterization, e.g., in powers of
1/L for spatial extent L, or, if possible, a model based on theory.

Actually, like in the analysis of the spin models of statistical physics, finite
size effects may even be useful to learn about infinite volume results. An
example is chiral perturbation theory which provides a systematic expansion
with the infinite volume quantities appearing as parameters [36, 37]. We apply
such formulas in the next chapter when we discuss a lattice calculation of the
chiral condensate on finite lattices.

For most spectroscopy studies one uses N3 × NT lattices which are much
larger in the time direction than in the spatial directions and L = aN . In-
deed, neglecting the finite time extent (and thus finite temperature effects)
the leading finite size effects are due to the spatial volume. Effects from in-
teraction around the spatial torus lead to exponential corrections to the mass
of O (exp(−αL)) (cf. [38, 39] and the discussion in Chap. 11). The lead-
ing contribution comes from the smallest mass hadron, the pion, and is of
O (exp(−LMπ)). As a rule of thumb, for LMπ > 4 finite size effects from this
mechanism can be ignored.

For small volumes numerical studies of the volume dependence of hadron
masses seem to indicate a 1/Ln behavior, with n ≈ 2−3. This would be
compatible with the intuitive picture that the wave function is squeezed at
too small spatial volume and that the observed shift in energy is in leading
order due to this squeezing effect (cf. [40, 41] and references therein). Most
analyses agree on the observation that ground state hadron masses obtained
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for linear lattice sizes larger than 3 fm show no noticeable volume dependence.
For excited states with wave functions of larger extent, the squeezing effect
may be more serious.

Continuum limit and scaling: A measured mass M (physical units)
has a-dependent corrections,

M(a) = Mphys (1 + O (aα)) , (6.73)

which may be different for different lattice actions. Whereas with the Wilson
fermion action a quadratic contribution to the mass was identified [42], one
finds that improving the fermion action reduces this dependence [33].

Eventually we want to obtain results for continuous space–time. This cor-
responds to the limit a → 0, or, equivalently, β → ∞. However, decreasing
the lattice spacing for a fixed number of lattice points shrinks the physical
volume. Thus, as we decrease a (increase β), we have to increase the number
of lattice points, N3 × NT , which in turn drives up the numerical cost of the
simulation. Typical simulations try to afford three or four values of a and
perform an extrapolation to a = 0.

Chiral extrapolation: Often numerical results are obtained for unphys-
ically large quark masses. Eventually we want to approach the small quark
masses corresponding to the physical pion. From a conceptual point of view
one even might be interested in the massless case, the chiral limit m → 0.
Massless 2-flavor QCD (i.e., assuming vanishing mu and md) is an interesting
and nontrivial, one-parameter theory, where hadron masses are expected to be
close to their experimental values. One could even call this a zero-parameter
theory, since the gauge coupling is only used to fix the scale. Unfortunately
this limit is hard to achieve for several reasons. Toward smaller quark masses
a Pandora’s box of problems opens up.

For fermion actions that do not preserve chiral symmetry (or do not in-
troduce a regulator like the twisted mass action, cf. Chaps. 7 and 10), there
are zero modes occurring even for nonvanishing quark mass, due to the ex-
ceptional configurations discussed in Sect. 6.2.5. This limits the smallest pion
masses that can be reached.

Another class of problems at small mq turns up when using the quenched
approximation. Omitting the fermion determinant has several effects:
• The absence of the fermion determinant alters the physics by omitting

sea quark loops (compare Fig. 6.2). Thus, hadrons cannot decay in the
quenched approximation.

• The contribution of the anomaly (see next chapter) is removed and the
η′-meson becomes light – an additional Goldstone mode appears.

• States with negative coefficients in their correlation function appear, so-
called ghosts. The quenched η′ combined with a hadron provides an ex-
ample for such a state [43–45], cf. the hairpin diagrams in Fig. 6.2.

• Small eigenvalues of the Dirac operator are not suppressed by the determi-
nant (which is the product of all eigenvalues). Consequently, fluctuations
leading to exceptional configurations may occur more often.
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Fig. 6.5. Quenched light hadron spectrum compared with experiments; statistical
and systematic errors are indicated. The plot is from a high statistics simulation
of the CP–PACS collaboration using Wilson valence quarks [42]. (Reprinted figure
with permission from S. Aoki et al., Phys. Rev. D 67, 034503 (2003). Copyright
(2003) by the American Physical Society)

For extrapolations in the quark mass, chiral perturbation theory provides
the suitable conceptional background (for introductory accounts, see [46–49]).
Chiral perturbation theory is an expansion in the pion mass around the chiral
limit taking into account the symmetries of QCD. The resulting extrapolation
formulas are typically expressed in terms of the pion mass, and as an example
we show the result for the extrapolation of the nucleon [50, 51]

MN = c0 + c2M
2
π + c3M

3
π + c4M

4
π ln(Mπ) + O

(
M4

π

)
, (6.74)

where the expansion coefficients ci are related to low energy constants such
as the pion decay constant in the chiral limit.

Chiral perturbation theory can be modified to take into account quenching
[52–54]. Formulas such as (6.74) obtain corrections which may become singular
in the chiral limit. This is due to the additional Goldstone boson already
addressed.

6.4.4 Some quenched results

High precision determinations of hadron masses involve measurements on sev-
eral hundred gauge field configurations on lattices with size up to 643 × 112
for quenched Wilson fermions (see e.g. [42, 55]; simulations with other formu-
lations will be addressed in later chapters). The lattice spacing in these sim-
ulations was as small as 0.05 fm at a linear physical lattice size of O(3.2 fm).
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To illustrate what has been achieved in quenched lattice spectroscopy, in
Fig. 6.5 we show the results of a high statistics study from the CP–PACS
collaboration [42]. The mass values have been obtained after extrapolation to
infinite volume, vanishing lattice spacing and the chiral limit. Results from
setting the strange quark mass with either K or φ are compared. Although the
calculation was done in the quenched approximation, a good agreement with
experimental data is found for a large range of hadrons. In Chap. 8 we will
compare Fig. 6.5 to a more recent spectroscopy result with fully dynamical
quarks.
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7

Chiral symmetry on the lattice

Chiral symmetry and its spontaneous breaking are central properties of QCD
with important phenomenological implications. They explain why pions have
unexpectedly small masses and why we do not see degenerate masses for parity
partners in the baryon sector. This important role of chiral symmetry and the
mechanism of its breaking require that a reasonable lattice version of QCD
has to implement chiral symmetry properly.

However, putting chiral symmetry onto the lattice turned out to be a
formidable challenge. The underlying reason is the doubling problem. In
Chap. 5 we have added the Wilson term to the naive fermion action in order to
remove the doublers. This term, however, breaks chiral symmetry explicitly.
Only more than 20 years after Wilson’s introduction of lattice gauge theory
the problem of chiral symmetry on the lattice was solved with a generalization
of chiral symmetry through the so-called “Ginsparg–Wilson equation” for the
lattice Dirac operator. With this new concept a clean implementation of chiral
symmetry on the lattice has been achieved.

This chapter is devoted to chiral symmetry on the lattice. After a brief
review of chiral symmetry in continuum QCD we discuss why Wilson fermions
fail to show chiral symmetry. Subsequently we present the Ginsparg–Wilson
equation and explore its consequences concerning the axial anomaly and the
index theorem. Finally we discuss an explicit solution of the Ginsparg–Wilson
equation, the so-called overlap operator.

7.1 Chiral symmetry in continuum QCD

7.1.1 Chiral symmetry for a single flavor

To warm up, let us first discuss chiral symmetry for the case of only a single
flavor in the continuum. The action for a massless fermion reads (for notational
convenience we drop the space–time argument x in the following)

Gattringer, C., Lang, C.B.: Chiral Symmetry on the Lattice. Lect. Notes Phys. 788,
157–184 (2010)
DOI 10.1007/978-3-642-01850-3 7 c© Springer-Verlag Berlin Heidelberg 2010
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SF [ψ,ψ,A] =
∫

d4x L
(
ψ,ψ,A

)
, (7.1)

L
(
ψ,ψ,A

)
= ψ γµ (∂µ + iAµ)ψ = ψDψ ,

where D denotes the massless Dirac operator.
We now perform a chiral rotation of the fermion fields

ψ → ψ′ = eiαγ5ψ , ψ → ψ′ = ψ eiαγ5 , (7.2)

where γ5 is the chirality matrix acting in Dirac space and α is a constant, real
parameter. The Lagrangian density is invariant under the chiral rotation,

L
(
ψ′, ψ′, A

)
= ψ′ γµ (∂µ + iAµ) ψ′ = ψ eiαγ5 γµ (∂µ + iAµ) eiαγ5 ψ

= ψ eiαγ5e−iαγ5 γµ (∂µ + iAµ) ψ = L
(
ψ,ψ,A

)
, (7.3)

where in the second step we have used γµγ5 = −γ5γµ. A mass term breaks
this invariance since it transforms nontrivially:

mψ′ψ′ = mψ ei2αγ5 ψ . (7.4)

The chiral symmetry decouples the action of left- and right-handed mass-
less fermions. To see this we introduce the right- and left-handed projectors

PR =
1 + γ5

2
, PL =

1− γ5

2
, (7.5)

which obey

P 2
R = PR , P 2

L = PL , PR PL = PL PR = 0 , PR + PL = 1 ,

γµPL = PRγµ , γµPR = PLγµ . (7.6)

With these we can define right- and left-handed fermion fields

ψR = PR ψ , ψL = PL ψ , ψR = ψ PL , ψL = ψ PR . (7.7)

After a few lines of algebra the decoupling of left- and right-handed compo-
nents follows

L
(
ψ,ψ,A

)
= ψL DψL + ψR DψR . (7.8)

Thus we find that left- and right-handed components “do not talk to each
other.” A mass term, however, mixes the components:

mψψ = m
(
ψR ψL + ψL ψR

)
. (7.9)

Since chiral symmetry of the action holds only for massless quarks, the limit
of vanishing quark mass is often referred to as the chiral limit.

One can summarize the essence of chiral symmetry in the simple equation

Dγ5 + γ5 D = 0 . (7.10)

It expresses the fact that the massless Dirac operator D = γµ(∂µ + iAµ) anti-
commutes with γ5.
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7.1.2 Several flavors

Let us now delve somewhat deeper into the symmetry properties of the QCD
action and consider the theory with Nf flavors of quarks. Now the fermion
fields ψ,ψ carry also a flavor index. However, for notational convenience we
use vector notation for the flavor index, too. In this notation the fermion
action reads

SF

[
ψ,ψ,A

]
=

∫
d4x ψ (γµ (∂µ + iAµ) + M)ψ , (7.11)

where we introduce a mass matrix

M = diag (m1,m2, . . . ,mNf ) (7.12)

acting in flavor space (in the real world m1 = mu, m2 = md, etc.). For gener-
alizing the chiral transformations of the last paragraph we use matrices that
mix the different flavors. In particular we denote the generators of SU(Nf ) by
Ti, i = 1, 2, . . . , N2

f − 1 (see Appendix A.1).
Before we discuss the chiral rotations, let us first note that the action for

massless quarks is also invariant under the N2
f vector transformations1

ψ′ = eiαTiψ , ψ′ = ψ e−iαTi , (7.13)
ψ′ = eiα1ψ , ψ′ = ψ e−iα1 , (7.14)

where 1 denotes the Nf ×Nf unit matrix. The invariance of (7.11) for M = 0
under transformations (7.13) and (7.14) is evident. However, the invariance
under (7.13) extends also to the case of degenerate masses M = diag(m,m, . . . ,
m). This symmetry is the isospin symmetry, generalized to Nf flavors. Sym-
metry (7.14) even holds for arbitrary masses and the corresponding conserved
quantity is baryon number.

The chiral or axial vector rotations are defined as

ψ′ = eiαγ5Ti ψ , ψ′ = ψ eiαγ5Ti , (7.15)
ψ′ = eiαγ51ψ , ψ′ = ψ eiαγ51 , (7.16)

where now also the left- and right-handed components of the different flavors
mix. Like for the case of a single flavor one finds that the action (7.11) is
invariant under (7.15) and (7.16) for the case of M = 0.

Taken altogether, the massless action has the symmetry

SU(Nf )L × SU(Nf )R × U(1)V × U(1)A . (7.17)

The notation used for the two SU(Nf ) pieces stresses that the terms for the
left- and right-handed components are symmetric under independent SU(Nf )
rotations.

1The name “vector transformations” comes from the fact that the corresponding
Noether currents are vector currents.
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However, when one considers the fully quantized theory one finds that
the fermion determinant is not invariant under (7.16) and the corresponding
so-called U(1)A axial symmetry is broken explicitly by a noninvariance of
the fermion integration measure (we will show this in Sect. 7.3). Taking into
account this so-called axial anomaly [1, 2] we find that for the quantized,
massless theory the symmetry is broken explicitly to the remaining symmetry

SU(Nf )L × SU(Nf )R × U(1)V . (7.18)

Introducing nonvanishing, degenerate masses, M = diag(m,m . . . m), breaks
the symmetry SU(Nf )L × SU(Nf )R explicitly to its subgroup SU(Nf )V ,

SU(Nf )V × U(1)V , (7.19)

and allowing for nondegenerate masses reduces the symmetry further to

U(1)V × U(1)V × . . . × U(1)V (Nf factors) . (7.20)

It is interesting to have a second look at the explicit breaking due to
the quark masses. The lightest quarks have masses that are relatively small
compared to the typical QCD scale of 1 GeV given by, e.g., the mass of
the proton (≈ 940 MeV). In particular one has (in the MS renormalization
scheme)

mu ≈ md ≈ 5MeV , ms ≈ 100MeV , (7.21)

such that the explicit breaking of the chiral symmetry is very small for u and
d quarks and a 10% effect for the s quark. Thus we would expect that (7.18)
is a good approximate symmetry for Nf = 2 and in part also for Nf = 3.

7.1.3 Spontaneous breaking of chiral symmetry

If u and d quarks were massless, SU(2)L ×SU(2)R ×U(1)V would be an exact
symmetry of QCD (for Nf = 2) at least on the Lagrangian level. Due to the
small mass of the u and d quarks the explicit breaking is very small and traces
of the symmetry should be visible. One of the consequences is that one expects
degenerate masses for the nucleon and its partner with negative parity, the
so-called N#.

We briefly sketch the argument for such a degeneracy of the masses: In the
last chapter we have shown that the masses of the nucleon and its negative
parity partner are obtained from the exponential decay of the zero momentum
correlators

C±(t)=−
∫

d3x

〈
εabc

(
u(0)aCγ5d(0)T

b

)
u(0)c

1±γ4

2
εefgue(x)

(
u(x)T

fCγ5d(x)g

)〉
,

(7.22)
where x = (x, t). This equation gives the continuum version of the lattice
correlator (6.21) after projection to zero momentum. The exponential decay
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of C+(t) gives the mass of the nucleon (for forward running t) and C−(t)
corresponds to the N#. Now consider the transformation

ψ → exp (iαγ5 T3) ψ , ψ → ψ exp (iαγ5 T3) , (7.23)

where ψ and ψ are vectors in flavor space: ψ = (u, d)T , ψ =
(
u, d

)
. Using

T3 = σ3/2 = diag(1/2,−1/2) we find that the individual flavors transform as

u → exp
(
+i

α

2
γ5

)
u , u → u exp

(
+i

α

2
γ5

)
,

d → exp
(
−i

α

2
γ5

)
d , d → d exp

(
−i

α

2
γ5

)
. (7.24)

When setting α = π this simplifies to

u → i γ5 u , u → iu γ5 , d → −i γ5 d , d → −i d γ5 . (7.25)

Inserting this transformation into (7.22) one finds that the correlators trans-
form under (7.25) as

C±(t) → −C∓(t) . (7.26)

Thus, up to an overall minus sign, the correlator C+(t) for the nucleon and the
correlator C−(t) for the N# are transformed into each other. Since an overall
minus sign does not alter the exponential decay properties of the correlator,
the invariance under (7.23) implies that the nucleon and its parity partner N#

have equal masses.
However, no such degeneracy of the nucleon and N# masses is observed.

The nucleon (proton or neutron) has a mass of 940 MeV, while the N# is
found at 1535 MeV. The mass difference of almost 600 MeV is far too large to
be explained by the small explicit breaking of chiral symmetry due to the u
and d quark masses. So another mechanism which breaks the symmetry under
(7.23) must be at work. Since the action itself is invariant (up to the small
explicit breaking by the quark masses), the strong breaking effect observed in
nature must come from a spontaneous breaking of chiral symmetry, except for
U(1)A which is broken explicitly by the anomaly.

The spontaneous breaking of symmetries is a concept which is well known
from, e.g., spin systems describing ferromagnets. While the Hamiltonian of
the system is invariant under a global rotation of the spins, in the ground
state of the system all spins point in the same direction, thus leading to a
macroscopic magnetization of the system.

A similar effect is taking place in QCD. While the action is invariant
under chiral rotations, the ground state is not. An order parameter for chiral
symmetry breaking is

〈u(x)u(x)〉 , (7.27)

the so-called chiral condensate. The chiral condensate transforms like a mass
term and is not invariant under chiral rotations. Consequently, when the the-
ory has a nonvanishing chiral condensate this implies that chiral symmetry is
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broken spontaneously. In Sect. 7.3 we will discuss the calculation of the chiral
condensate on the lattice and show that it has a nonvanishing value.

Another important consequence of a spontaneously broken continuous
symmetry is the appearance of so-called Goldstone modes or Goldstone bosons
(see standard text books on quantum field theory such as [3, 4]). Goldstone
modes are massless bosonic excitations. For the example of the spin system
with continuous symmetry group these are spin waves. In the case of QCD the
pions are interpreted as the “would-be” Goldstone bosons of chiral symmetry
breaking. For massless quarks a spontaneous symmetry breaking mechanism
of QCD would explain massless pions. Their relatively small masses of about
140 MeV can be understood as resulting from the explicit breaking by the u
and d quark masses.

To summarize, we find that for the light quark flavors the action is essen-
tially invariant under chiral transformations – up to the chiral U(1) transfor-
mation symmetry, which is broken explicitly by the axial anomaly. However,
the experimental findings do not reflect the chiral symmetry and we must
conclude that chiral symmetry is broken spontaneously due to the dynamics
of QCD. Chiral symmetry at the classical level and its spontaneous break-
ing provide an explanation for several phenomena, such as the nondegenerate
masses of baryonic parity partners or the small masses of the pions.

7.2 Chiral symmetry and the lattice

Having convinced ourselves of the crucial importance of chiral symmetry and
its breaking for QCD phenomenology, let us now return to the lattice. We
start with analyzing the chiral properties of Wilson fermions.

7.2.1 Wilson fermions and the Nielsen–Ninomiya theorem

Upon inspecting the Wilson Dirac operator (5.51) we find that (7.10) is
violated also for vanishing quark mass. The culprit is the Wilson term (5.50)
which we had to add to the naive action in order to remove the doublers.
This term comes with the unit matrix 1 in Dirac space which does not anti-
commute with γ5 and therefore violates (7.10). Thus, even for massless quarks
we break chiral symmetry explicitly. Consequently we cannot expect to cap-
ture such a subtle effect as spontaneous chiral symmetry breaking with Wilson
fermions.

This situation cannot be simply overcome by adding a term for removing
the doublers in a different way. There is a fundamental theorem by Nielsen
and Ninomiya [5–7] which states that on the lattice one cannot implement
chiral symmetry in the form of (7.10) and at the same time have a theory free
of doublers. More explicitly [8] consider a Euclidean action for free fermions
in the form
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S =
∑

n,m,µ

ψ(n) i γµ Fµ(n|m)PR ψ(m) . (7.28)

The kernel F (n|m) is assumed to be translationally invariant, Fµ(n|m) =
Fµ(n − m), and should give rise to a hermitian Hamilton operator which im-
plies Fµ(−n) = Fµ(n)∗. Furthermore, Fµ(n) must be local, i.e., decrease suffi-
ciently fast, such that its Fourier transform F̃µ(p) exists and all its derivatives
are continuous. Due to the right-handed projector PR one would naively ex-
pect that action (7.28) describes only right-handed fermions. However, the
arguments in [8], based on the expansion of F̃µ(p) around its zeros (poles in
the propagator), show that an equal number of left- and right-handed fermions
is described by an action of the form (7.28).

For many years the Nielsen–Ninomiya theorem seemed to define the ul-
timate limitation for a further development of lattice QCD. A deep under-
standing of chiral symmetry on the lattice became possible only after the
rediscovery of the Ginsparg–Wilson equation.

7.2.2 The Ginsparg–Wilson equation

In their seminal paper [9], Ginsparg and Wilson formulated the essential equa-
tion for chiral symmetry on the lattice. Based on renormalization group trans-
formations (which we will discuss in Chap. 9) they proposed to replace the
continuum expression (7.10) by

Dγ5 + γ5 D = aD γ5 D . (7.29)

In this equation the anti-commutator (7.10) is augmented with a nonvani-
shing right-hand side. For dimensional reasons – the Dirac operator D has
dimension 1/length – an extra factor of the lattice constant a appears for
the term quadratic in D. Thus the right-hand side vanishes for a → 0 and
the continuum form of chiral symmetry is recovered in a naive continuum
limit. However, (7.29) allows to define chiral symmetry on the lattice also
for finite a. We will discuss this construction and the consequences of the
Ginsparg–Wilson equation in great detail below.

It is interesting to analyze the effect of the extra term for the quark prop-
agator D−1. Assuming that D has no zero modes and is invertible, we may
multiply (7.29) with D−1 from both sides and obtain

γ5 D−1(n|m) + D−1(n|m) γ5 = a γ5 δ(n − m) , (7.30)

where we write explicitly the space–time arguments n,m of the propagators.
The term introduced by Ginsparg and Wilson is simply a contact term, i.e.,
the anti-commutator of the propagator with γ5 is modified only for n = m.

Before we explore the consequences of the Ginsparg–Wilson equation, we
should remark that the original paper [9] from 1982 had no immediate con-
sequences and was “forgotten,” since no solution of the nonlinear equation
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(7.29) was imagined for the interacting case (nontrivial gauge links) at that
time. Only in 1997 and 1998 it was realized [10, 11] that two independent ap-
proaches to chiral symmetry on the lattice, overlap and fixed point fermions
introduced earlier, give rise to Dirac operators D obeying (7.29). We discuss
these in Sect. 7.4 and Chap. 9.

7.2.3 Chiral symmetry on the lattice

We have already announced that, based on the Ginsparg–Wilson equation, it
is possible to define a modified chiral rotation which leaves the lattice action
for massless quarks invariant [12]. Let D be a lattice Dirac operator obeying
the Ginsparg–Wilson equation (7.29). Using D we can define a chiral rotation,
which for a → 0 reduces to the continuum transformation (7.2),

ψ′ = exp
(
iαγ5

(
1− a

2
D
))

ψ , ψ′ = ψ exp
(
iα

(
1− a

2
D
)
γ5

)
. (7.31)

In this equation the action of the Dirac operator is understood in the sense

(Dψ) (n)α
a

=
∑

m,β,b

D(n|m)αβ
ab

ψ(m)β
b

,
(
ψD

)
(m)β

b
=

∑

n,α,a

ψ(n)α
a
D(n|m)αβ

ab
.

(7.32)
In the subsequent equations we refer to this convention, but use matrix/vector
notation for all indices: space–time, Dirac, and color.

The Lagrangian density for massless fermions for such a Dirac operator is
invariant under the transformation (7.31):

L
(
ψ′, ψ′) = ψ′ Dψ′

= ψ exp
(
iα

(
1− a

2
D
)
γ5

)
D exp

(
iαγ5

(
1− a

2
D
))

ψ

= ψ exp
(
iα

(
1− a

2
D
)
γ5

)
exp

(
−iα

(
1− a

2
D
)
γ5

)
Dψ

= ψDψ = L
(
ψ, ψ

)
. (7.33)

In the step from the second to the third line we have used

Dγ5

(
1− a

2
D
)

+
(
1− a

2
D
)
γ5 D = 0 , (7.34)

which is just another way of writing the Ginsparg–Wilson equation (7.29).
Decomposition (7.7) into left- and right-handed components can be gen-

eralized to the lattice. We define a new kind of projectors

P̂R =
1 + γ̂5

2
, P̂L =

1− γ̂5

2
, γ̂5 = γ5 (1− aD) . (7.35)

Due to the Ginsparg–Wilson equation (7.29) one finds γ̂ 2
5 = 1, implying
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P̂ 2
R = P̂R , P̂ 2

L = P̂L , P̂R P̂L = P̂L P̂R = 0 , P̂R + P̂L = 1 . (7.36)

Invoking again the Ginsparg–Wilson equation one shows

D P̂R = PL D , D P̂L = PR D . (7.37)

Based on this last equation a sensible definition of left- and right-handed
components, which generalizes the continuum form (7.7), is

ψR = P̂R ψ , ψL = P̂L ψ , ψR = ψ PL , ψL = ψ PR . (7.38)

This definition, together with (7.37), implies the vanishing of terms like
ψL DψR and ψR DψL. The action thus can be decomposed like the continuum
action (7.8) into left- and right-handed parts:

ψDψ = ψL DψL + ψR DψR . (7.39)

We thus may identify the continuum fields ψL, ψR with the lattice quantities
(7.38). The symmetry breaking mass term (7.9) is identified as the lattice
term

m
(
ψR ψL + ψL ψR

)
= mψ

(
PL P̂L + PR P̂R

)
ψ = mψ

(
1− a

2
D
)
ψ .

(7.40)
Thus Ginsparg–Wilson fermions with mass are described by the operator [13]

Dm = D + m
(
1− a

2
D
)

= ωD + m1 , (7.41)

with the abbreviation
ω ≡ 1 − am

2
. (7.42)

With chiral rotation (7.31) and decomposition (7.39) we have successfully
implemented the corresponding continuum structures (7.2) and (7.8) on the
lattice. The generalization to several flavors proceeds along the same steps as
for the continuum case.

Let us stress the most important difference between the concept of
chirality in the continuum and on the lattice. In the continuum chirality
is a strictly local concept independent of the gauge field. Rotation (7.2),
as well as projection (7.7), only involves the spinors at a given space–time
point x, i.e., only ψ(x) or ψ(x) is needed. This is different on the lat-
tice. Both chiral rotation (7.31) and projection (7.38) require the appli-
cation of the lattice Dirac operator D. Thus the chiral rotation and the
decomposition into components involve neighboring sites and depend on
the gauge field. Consequently the chirality of a lattice fermion is deter-
mined using information from the gauge field and from neighboring lattice
sites.
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7.3 Consequences of the Ginsparg–Wilson equation

In this section we discuss some of the most important consequences of the
Ginsparg–Wilson equation (7.29) without specifying a particular solution.
Actual solutions will be presented in Sect. 7.4, the so-called overlap action,
and in Sects. 9.2 and 9.3 fixed point fermions will be discussed. We remark
that chiral symmetry will also play a major role when we discuss Ward iden-
tities in Chap. 11. This subject is not addressed here.

7.3.1 Spectrum of the Dirac operator

We begin our discussion of the consequences of the Ginsparg–Wilson equation
by analyzing the eigenvalue spectrum of the Dirac operator on a finite lattice.
The corresponding eigenvalue equation is denoted by

D vλ = λ vλ . (7.43)

At the moment we do not invoke the Ginsparg–Wilson equation and only
require the Dirac operator D to be γ5-hermitian (compare Sect. 5.4.3),

γ5 Dγ5 = D† . (7.44)

This property is obeyed by most commonly used Dirac operators.2 For the
example of the Wilson Dirac operator this can be shown in a few lines of
algebra, and the overlap operator, which we will discuss below, inherits γ5-
hermiticity from the kernel Dirac operator used for its construction.

The requirement of γ5-hermiticity alone already has interesting conse-
quences for the eigensystem. For the characteristic polynomial P (λ) of D
one finds (the asterisk denotes complex conjugation)

P (λ) = det[D − λ1] = det[γ 2
5 (D − λ1)] = det[γ5(D − λ1)γ5]

= det[D† − λ1] = det[D − λ∗1]∗ = P (λ∗)∗ , (7.45)

where we have used γ 2
5 =1 and (7.44). The eigenvalues λ are the zeros of P (λ)

and (7.45) implies that if λ is a zero, so is λ∗. Thus for a γ5-hermitian Dirac
operator the eigenvalues are either real or come in complex conjugate pairs.

Equation (7.44) also has an interesting consequence for the γ5 matrix
element of the eigenvectors. Writing the inner product of two vectors u, v
as u†v = (u, v) we find

λ(vλ, γ5 vλ) = (vλ, γ5D vλ) = (vλ, D†γ5 vλ) = (D vλ, γ5 vλ) = λ∗(vλ, γ5 vλ) ,
(7.46)

and thus (Imλ) (vλ, γ5 vλ) = 0. This implies

(vλ, γ5 vλ) = 0 , unless λ ∈ R . (7.47)

2Unless a chemical potential, a θ-angle or a twisted mass term is introduced.
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Im λ

Re λ1/a

1/a

Im λ−1

Re λ−1

a/2

Fig. 7.1. Allowed regions for the eigenvalues λ of a Ginsparg–Wilson Dirac oper-
ator in the complex plane (left-hand side plot) and for the eigenvalues λ−1 of the
corresponding propagator (right-hand side plot)

Hence only eigenvectors vr with real eigenvalues r can have nonvanishing
chirality, i.e., (vr, γ5vr) )= 0.

In addition to being γ5-hermitian, we now also require the Dirac operator
D to obey the Ginsparg–Wilson equation (7.29). Multiplying this equation
with γ5 from either left or right and using (7.44) we obtain

D† + D = aD† D , D + D† = aD D† . (7.48)

A first consequence of these two equations is that a γ5-hermitian Ginsparg–
Wilson Dirac operator D is a normal operator, i.e., D and D† commute, since
the left-hand sides of the two Equations (7.48) are equal. Normality implies
that the eigenvectors form an orthogonal basis (see Appendix A.5). Further-
more, multiplying the first equation in (7.48) with a normalized eigenvector
vλ from the right and with v†

λ from the left, one finds

λ∗ + λ = aλ∗λ . (7.49)

Writing the eigenvalue as λ = x + i y this equation turns into
(

x − 1
a

)2

+ y2 =
1
a2

, (7.50)

which shows that the eigenvalues of a γ5-hermitian Ginsparg–Wilson Dirac
operator are restricted to a circle in the complex plane (compare the left-
hand side plot of Fig. 7.1). This so-called Ginsparg–Wilson circle has its center
at 1/a on the real axis and a radius of 1/a. We remark that the doubler
modes, i.e., those modes where in the free case at least one of the momentum
components equals to π/a, end up near 2/a in the complex plane and decouple
as a → 0.

A convenient parametrization of the eigenvalues λ of a Ginsparg–Wilson
Dirac operator is given by

λ =
1
a

(
1 − eiϕ

)
, ϕ ∈ (−π, π] . (7.51)

Using this parametrization one finds that the eigenvalues 1/λ of the quark
propagator D−1 fall on a line parallel to the imaginary axis (see Fig. 7.1),
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1
λ

=
a

2
+ i

a

2
sin(ϕ)

1 − cos(ϕ)
. (7.52)

Since the Ginsparg–Wilson circle touches the origin of the complex plane,
D may have exact zero eigenvalues. Let v0 be a zero mode, then

D v0 = 0 ⇒ γ5 D v0 = 0 ⇒ Dγ5 v0 = 0 , (7.53)

using the Ginsparg–Wilson equation in the last step. Thus, on the subspace
of zero modes, the Dirac operator commutes with γ5 and the zero modes can
be chosen as eigenstates of γ5. Since γ 2

5 = 1, the eigenvalues of γ5 are +1 and
−1 and we conclude

γ5 v0 = ± v0 , (7.54)
implying that the zero modes are chiral. A zero mode with positive chirality
is referred to as right handed, while left handed is used for negative chirality.

From the left-hand side plot in Fig. 7.1 it is obvious that a Ginsparg–
Wilson Dirac operator can have real eigenvalues also at 2/a. Following the
same steps as for the zero modes, one finds that also the eigenmodes with
real eigenvalue 2/a are chiral. These eigenmodes are the doubler partners of
the zero modes shifted to the other side of the Ginsparg–Wilson circle, where
they decouple in the limit a → 0.

7.3.2 Index theorem

In the continuum the celebrated Atiyah–Singer index theorem [14] relates the
numbers of left- and right-handed zero modes of the massless Dirac operator to
a quantity Qtop which is a property of the gauge fields, the so-called topological
charge. To derive the lattice equivalent of the index theorem [15] we consider

Qtop ≡ a

2
tr [γ5D] = −1

2
tr [γ5(2 − aD)] = −1

2

∑

λ

(vλ, γ5(2 − aD) vλ)

= −1
2

∑

λ

(2 − aλ) (vλ, γ5 vλ) = n− − n+ , (7.55)

where n−, n+ denote the numbers of left- and right-handed zero modes. In the
second step we have used tr[γ5] = 0, and in the third step we expressed the
trace as a sum over the eigenvectors vλ of D. As discussed above, D is normal
and thus its normalized eigenvectors form an orthonormal basis suitable for
computing the trace. In the last step we have used (7.47), implying that
only eigenvectors with real eigenvalues have nonvanishing chirality and that
the factor (2 − aλ) cancels the contributions from the doubler modes with
λ = 2/a. The γ5 matrix elements of the surviving zero modes are ±1 due
to (7.54).

If one leaves out the second step in (7.55), where the extra γ5 was sneaked
in, one obtains Qtop = n′

+ −n′
−, where n′

± are the numbers of left- and right-
handed eigenvectors with eigenvalue 2/a. This gives the same result, since the
doublers enter with opposite chirality.
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The topological charge Qtop can be written as the space–time sum of the
so-called topological charge density q(n). Doing so we obtain

Qtop = a4
∑

n∈Λ
q(n) , q(n) =

1
2 a3

trCD[γ5D(n|n)] , Qtop = n− − n+ ,

(7.56)
where trCD denotes the trace over color and Dirac indices.

The lattice index theorem (7.56) is a truly remarkable result: The Dirac
operator depends on the gauge field variables Uµ(n). Thus the topological
charge Qtop is a functional of the gauge field, and it is a highly nontrivial
statement that this functional is an integer number. As the name “topological
charge” already indicates the underlying reason is of topological nature.

At this point we remark that in actual lattice calculations one never finds
zero modes of both chiralities for a single configuration, i.e., n+ and n− are
not both nonzero simultaneously. It may be argued that the underlying reason
is that only a very subtle arrangement of the gauge field would give rise to
n+ )= 0 and n− )= 0 at the same time. Such an arrangement has zero measure
in the path integral, and the fact that at least one of the numbers n+, n−
vanishes implies Qtop = n− or Qtop = −n+. This fact is sometimes referred
to as absence of fine tuning.

In the continuum the index theorem takes the form Qcont
top = n−−n+, with

the topological charge given by

Qcont
top =

∫
d4x q(x)cont , q(x)cont =

1
32π2

εµνρσ trC [Fµν(x)Fρσ(x)] ,

(7.57)
where εµνρσ is the completely anti-symmetric rank 4 Levi–Civita tensor and
Fµν is the field strength tensor (2.15). The functional Qcont

top is an expression
for the so-called Pontryagin index.

An instance of a continuum gauge field configuration with nonvanishing
Qcont

top is so-called instantons [16]. There it was also shown that instantons
are local minima of the gauge action. Thus they give a contribution in a
saddle point evaluation of the path integral. This insight led to a wealth
of papers analyzing the role of topological objects in QCD (for reviews see
[17, 18] and references therein). For an introductory text on topological field
configurations and an elementary proof that Qcont

top of (7.57) is indeed integer
valued we recommend [19].

On the lattice the topological charge (7.55) is an integer due to its defini-
tion through the number of zero modes of a chiral Dirac operator. Thus the
remaining question is whether the lattice definition (7.56) of the topological
charge density q(n) approaches its continuum counterpart q(x)cont of (7.57)
in the limit a → 0. It can be shown that under certain (smoothness) condi-
tions for the gauge fields one has q(n) = q(x)cont + O(a2) as a → 0. Several
derivations of this fact have been given for various settings and conditions on
the gauge fields, the first results being [15, 20, 21].
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The QCD path integral is symmetric with respect to configurations of pos-
itive and negative topological charges and thus the expectation value 〈Qtop〉
vanishes. However, one can consider the topological susceptibility defined as

χtop =
1
V

〈Qtop
2〉 =

1
a4|Λ| a8

∑

m,n

〈q(m) q(n)〉 = a4
∑

n

〈q(0) q(n)〉 , (7.58)

where in the last step we have used translational invariance of the correlator
to get rid of the summation over m. We remark that χtop is volume dependent.
The topological susceptibility considered in the infinite volume limit provides
information about the distribution of topological charge as a function of Nf

and m [22]. Using the fermionic definition (7.55) of the topological charge
it has been determined in several quenched calculations [23–25] (and refer-
ences therein) with a result of χtop ≈ (190 MeV)4. Since in the quenched case
the fermion determinant is not taken into account, this result is independent
of m. For the dynamical case the simulations are not so far advanced and
the dependence of χtop on Nf and m is not finally settled. Phenomenologi-
cally, the topological susceptibility plays an interesting role in the so-called
Witten–Veneziano formula which we briefly address at the end of the next
section.

7.3.3 The axial anomaly

Having implemented chiral symmetry on the lattice, we are now ready to
give a (lattice) derivation [12] of the axial anomaly which we have already
addressed in Sect. 7.1. There it was stated that the integration measure for
the fermions is not invariant under the flavor diagonal rotation (7.16).

To derive the anomaly on the lattice we consider lattice QCD with Nf

massless flavors with a Dirac operator obeying the Ginsparg–Wilson equa-
tion. The spinors ψ,ψ, describing our Nf flavors, are transformed with an
infinitesimal chiral rotation of the form

ψ′ =
(
1 + iεM γ5

(
1− a

2
D
))

ψ , ψ′ = ψ
(
1 + iεM

(
1− a

2
D
)
γ5

)
.

(7.59)
This transformation is the infinitesimal version of (7.31) obtained by setting
α = ε in (7.31) and keeping only the leading terms in the expansion of the
exponential in ε. In addition we consider several flavors by allowing for a
mixing matrix M which can either be the identity, M = 1Nf , or one of the
generators of SU(Nf ), M = Ti. According to (5.26) for the transformation of
the integration measure of Grassmann variables we obtain

D
[
ψ,ψ

]
= D

[
ψ′, ψ′]det

[
1+iεM γ5

(
1− a

2
D
)]

det
[
1+iεM

(
1− a

2
D
)
γ5

]

= D
[
ψ′, ψ′] det

[
1+iεM γ5

(
1− a

2
D
)]2

, (7.60)
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where in the second step we used the invariance of the determinant under
cyclic permutation of γ5. Expansion in ε gives

det
[
1 + i εM γ5

(
1− a

2
D
)]2

= exp
(
2 tr

[
ln
(
1 + i εM γ5

(
1− a

2
D
))])

= exp



−2
∞∑

j=1

(−i ε)j

j
tr
[(

M γ5

(
1− a

2
D
))j

]



= 1 + 2 i ε tr
[
M γ5

(
1− a

2
D
)]

+ O
(
ε2
)

(7.61)

= 1 + 2 i ε trF [M ]
∑

n∈Λ

(
3 trD[γ5] −

a

2
trCD [γ5 D(n|n)]

)
+ O(ε2) .

In the first line of this equation we have used a well-known formula for the
determinant (see Appendix A.5) and in the second line the logarithm was
expanded in a power series. In the last line we have split the trace into its
components, with trF , trC , and trD denoting the traces over flavor, color, and
Dirac indices, respectively. The sum runs over all sites of the lattice Λ. Since
γ5 is traceless, the first of the O(ε) terms vanishes.

If the flavor matrix M is chosen to be one of the SU(Nf ) generators, the
anomaly is canceled due to the vanishing trace over the flavor indices. Only
for the flavor singlet choice M = 1Nf this trace is nontrivial, trF [M ] = Nf .
Combining (7.60) and (7.61) we obtain for this case

D
[
ψ,ψ

]
= D

[
ψ′, ψ′] (

1 − 2 i εNf Qtop + O
(
ε2
))

, (7.62)

where we have used definition (7.56) of the topological charge Qtop.
We conclude that indeed a chiral, flavor singlet rotation is not a symmetry

of QCD, although the action itself is invariant (for massless quarks). The
non-invariance comes from the measure and the symmetry breaking term is
the topological charge. This result underlines again the strong connection
between chiral symmetry and topological gauge field configurations which we
have already addressed when we discussed the index theorem.

The axial anomaly has important physical consequences. Most importantly
it implies that the chiral flavor singlet symmetry cannot be broken sponta-
neously and no flavor singlet Goldstone particle exists. This explains why the
η-meson is much heavier than the pions, when one considers approximate chi-
ral symmetry for Nf = 2. For approximate chiral symmetry with Nf = 3, this
role is taken over by the η′-meson. The aforementioned Witten–Veneziano
formula [26–28] relates the mass of the η′ to the topological susceptibility
χtop, thus revealing a deep connection of QCD vacuum properties and the
mass spectrum. The mathematical subtleties of the Witten–Veneziano for-
mula have been addressed in several recent articles [29–33], partly based on
the rigorous framework provided by Ginsparg–Wilson fermions.



172 7 Chiral symmetry on the lattice

7.3.4 The chiral condensate

In Sect. 7.1 we have discussed that in the continuum the vacuum expectation
value 〈u(x)u(x)〉 is not invariant under any of the chiral rotations (7.15) and
(7.16). Thus it can serve as an order parameter for spontaneous chiral sym-
metry breaking, with a nonvanishing condensate signaling the spontaneous
breaking of chiral symmetry. We emphasize again that this spontaneous break-
ing occurs only for Nf ≥ 2, since for Nf = 1 the single axial symmetry is not
broken spontaneously, but explicitly by the anomaly.

When discussing chiral symmetry we have identified the correct mass term
on the lattice in (7.40), i.e., the scalar bilinear which maximally mixes left-
and right-handed components. Accordingly, for lattice QCD with Ginsparg–
Wilson fermions we consider the scalar expectation value

Σlat (a,m, |Λ|) ≡ −
〈
u(n)

(
1− a

2
D
)

u(n)
〉

. (7.63)

The expectation value on the right-hand side is evaluated on a lattice Λ with
|Λ| sites and a lattice spacing a. We consider Nf flavors of fermions, all with
mass m, and the corresponding Dirac operator Dm is given by (7.41). The
term aD/2 in (7.63) cancels the real part of the eigenvalues (7.52) of the
massless propagator, thus shifting its spectrum onto the imaginary axis as in
the continuum (see the right-hand side of Fig. 7.1).

Since our formulation is translationally invariant, (7.63) is independent
of n and we can average over all lattice sites. Doing so and performing the
Grassmann integration according to (5.54) we find

Σlat (a, m, |Λ|) =
1

a4|Λ|

〈
tr
[(

1− a

2
D
)

D−1
m

]〉

G
, (7.64)

where the trace runs over space–time, color, and Dirac indices, and

〈X 〉G =
1
Z

∫
D[U ] e−SG[U ] det[Dm]Nf X (7.65)

is the remaining gauge field integral. With the abbreviation (7.42) the prop-
agator, i.e., the inverse of Dm defined in (7.41), reads D−1

m = (ω D + m1)−1,
ω = 1 − am/2, and after some algebra (7.64) turns into

Σlat (a,m, |Λ|) =
1

ω a4 |Λ|

〈
tr
[
(ω D + m1)−1 − a

2
1
]〉

G
. (7.66)

This expression is now ready for a numerical or analytical investigation of the
chiral condensate.

At this point a few remarks on the necessary limits are in order. Sponta-
neous breaking of a symmetry requires an infinite system, therefore the limit
|Λ| →∞ has to be taken. Subsequently the explicit breaking through the
mass term has to be removed, i.e., the limit m → 0 has to be performed.
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Like in other cases of spontaneous symmetry breaking these limits cannot be
interchanged. After these limits, (7.66) becomes a bare condensate at a fixed
ultraviolet cutoff 1/a. The definition of the physical condensate is regulariza-
tion scheme dependent and its value must be converted to other schemes (like
the continuum MS scheme) by renormalization with the scalar renormaliza-
tion factor ZS which we discuss in Chap. 11. Subsequently one can analyze
the scaling with a and perform the continuum limit.

It is obvious that in a numerical approach the discussed sequence of limits
is hard to establish. However, in [22] the chiral condensate has been studied
in a 4D box of volume V at finite mass m using low-energy effective theory.
An expression for the chiral condensate Σ(m,V ) as a function of m and V
was obtained which contains the physical chiral condensate

Σ ≡ lim
m→0

lim
V →∞

Σ(m,V ) (7.67)

as a parameter. Here both, Σ and Σ(m,V ), are understood at finite cutoff.
Since this is not necessarily a lattice cutoff we do not indicate it explicitly.

Once the functional form Σ(m,V ) is known, one can use lattice simulations
to compute the condensate Σlat(a,m, |Λ|) at finite volume V = a4|Λ| and
finite mass m and fit the data to the function Σ(m,V ) to obtain the true
bare condensate Σ as a fit parameter. This procedure has first been carried
out for the quenched case, which we discuss here. As always, the motivation
for studying the quenched case is the hope that the quenched result for Σ will
be close to its value at Nf = 3.

Within partially quenched chiral perturbation theory one can derive the
functional form for the chiral condensate [34, 35] for different topological sec-
tors as a function of the volume V and mass parameter m. We speak of the
topological sector ν when in the path integral only gauge configurations with
topological charge Qtop = ν are considered. On the lattice this is a concept
which can, e.g., be implemented by sorting all configurations of a Monte Carlo
ensemble with respect to Qtop as determined from the index theorem (7.56).

The result from chiral perturbation theory mirrors a finding from random
matrix theory, where one obtains universal properties of the spectra of certain
symmetry classes of random matrices. The quenched result for the condensate
in the topological sector ν is given by

Σ(m, V )ν = Σ z
(
I|ν|(z)K|ν|(z) + I|ν|+1(z)K|ν|−1(z)

)
+

|ν|
mV

, (7.68)

where z = mV Σ is a dimensionless scaling variable and Σ is the bare conden-
sate defined in (7.67). The lattice condensate Σlat(a, m, |Λ|) is then computed
for each sector ν separately and fitted to the functional form (7.68).

Let us discuss the strategy for a numerical determination of Σ in more
detail [36]. Expanding the Bessel functions in (7.68) one finds for m → 0:
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Fig. 7.2. Lattice results for the bare condensate for different volumes and different
topological sectors [37]. (Reprinted from Hasenfratz et al., copyright (2002) with
permission from Elsevier)

Σ(m, V )ν
m

m→0−→






Σ2 V
(

1
2 − ln(z/2) − γ

)
for ν = 0 ,

Σ2 V
1

2 |ν| +
|ν|

m2 V
for ν )= 0 .

(7.69)

The topologically trivial case (ν = 0) contains a logarithmic divergence at
small m (= small z) and thus was found to be not very suitable for a numerical
study at small m. For ν )= 0 an extra term from the zero modes appears
which diverges even more strongly.3 However, this contribution can be cleanly
removed by hand in order to improve the signal. This is done by exploiting
the chirality of the zero modes (7.54) and taking the trace in (7.66) only
after the propagator has been multiplied with (1± γ5)/2. For each individual
gauge configuration the sign is chosen opposite to the chirality of the zero
modes. After this modification the trace can be computed using the stochastic
estimator techniques discussed in Chap. 8.

Since we are computing the bare condensate at finite V and m, cutoff
effects can alter behavior (7.69). In leading order in m this gives rise to an
extra cutoff-dependent constant c. Thus for nontrivial topological sectors and
subtracted zero mode contributions one finds the final form

Σ(m, V )′ν
m

m→0−→ Σ2 V

2 |ν| + c (ν )= 0) . (7.70)

The ratio Σlat(a,m, |Λ|)/m thus is expected to approach a constant at m → 0,
and comparison of different volumes and topological sectors allows one to
extract the bare condensate Σ. The data in Fig. 7.2 were computed in [37]
along these lines and nicely illustrate the behavior according to (7.70).

3For the case of dynamical fermions, zero modes are suppressed by the fermion
determinant which vanishes at m = 0 and thus no such divergent term occurs.
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The last step, which we will address in detail only in Chap. 11, is the
renormalization with ZS to obtain the physical quenched condensate Σphys =
ZSΣ. Several independent calculations [36–39] determined the quenched chiral
condensate and after renormalization obtained Σphys ≈ (270MeV)3 (in the
MS scheme at renormalization scale 2 GeV).

7.3.5 The Banks–Casher relation

So far we have discussed the numerical analysis of the chiral condensate for
a finite system at finite quark mass m. However, one can at least formally
perform the thermodynamic and chiral limits and parameterize the unknown
nonperturbative information in terms of the eigenvalue density of the Dirac
operator near the origin. This gives rise to an important relation, the so-called
Banks–Casher relation [40], which we now derive.

The starting point of our derivation is (7.66). In a first step we express the
trace as a sum over all eigenvalues λi of D:

tr
[
(ωD + m1)−1 − a

2
1
]

=
∑

λi

(
1

ω λi + m
− a

2

)

= (n+ + n−)
(

1
m

− a

2

)
+ (n′

+ + n′
−)

(
1

2ω/a + m
− a

2

)

+
∑

λi (=0,2/a

(
1

ω λi + m
− a

2

)
, (7.71)

where in the second line we have split the sum over all eigenvalues in the
contributions of the n+ + n− eigenvalues 0, the n′

+ + n′
− eigenvalues 2/a, and

a sum over the complex eigenvalues. Recalling definition (7.42) for ω one finds
that the factor for the contribution of the eigenvalues at 0 reduces to ω/m,
whereas the contribution of the eigenvalues at 2/a vanishes. Expressing the
eigenvalues λi through the phases ϕi introduced in (7.51) and combining the
complex conjugate pairs of eigenvalues the last expression turns into

ω

m
(n+ + n−) +

ω

2

∑

ϕi (=0,π

(1 + cos(ϕi)) m

(2 − 2 cos(ϕi)) (am + ω)ω/a2 + m2
. (7.72)

Thanks to the above discussed “absence of fine tuning” for a given gauge
configuration only one of the numbers n+, n− can be nonvanishing and we
may replace (n+ + n−) → |Qtop|, the number of zero modes. Inserting (7.72)
for the trace in (7.66) one arrives at

lim
|Λ|→∞

Σlat (a,m, |Λ|) = lim
|Λ|→∞

1
a4|Λ|

〈|Qtop|〉G
m

(7.73)

+
1

2 a4

∫ π

−π
dϕρA(ϕ)

(1 + cos(ϕ)) m

(2 − 2 cos(ϕ)) (1 − a2 m2/4)/a2 + m2
,
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where we have defined the angular density ρA(ϕ) for the angles ϕ of the
eigenvalues on the Ginsparg–Wilson circle as

ρA(ϕ) = lim
|Λ|→∞

〈
1
|Λ|

∑

ϕi (=0,π

δ(ϕ− ϕi)

〉

G

. (7.74)

In the definition of the density ρA(ϕ) we have already performed the limit
|Λ| →∞ (at fixed a) necessary for the spontaneous breaking of a continuous
symmetry. In this limit the eigenvalues become dense on the Ginsparg–Wilson
circle and ρA(ϕ) as defined in (7.74) indeed becomes a density.

The first contribution (7.73) vanishes for |Λ| →∞ , since 〈|Qtop|〉G does
not grow faster than

√
V . This follows from the finiteness of χtop = 〈Q2

top〉/V .
For the second term in (7.73) one can utilize that

δm(X) =
1
π

m

X2 (1 + O(m2)) + m2
(7.75)

is a δ-sequence, i.e., δm(X) → δ(X) for m → 0 (see e.g. [41]). Thus we obtain
for the second part of (7.73), which remains finite for m → 0:

π

2 a4

∫ π

−π
dϕ (1 + cos(ϕ)) δ

(
a−1

√
2 − 2 cos(ϕ)

)
ρA(ϕ)

=
π

2 a3

∫ π

−π
dϕ (1 + cos(ϕ)) δ(ϕ) ρA(ϕ) =

π

a3
ρA(0) , (7.76)

where we have used standard manipulations for the Dirac-delta with a function
as argument. Equation (7.76) shows that after taking the infinite volume limit
the chiral condensate is proportional to the angular density ρA(ϕ) at ϕ = 0.
We emphasize that in the definition of the density the exact zero eigenvalues
are left out.

Usually one does not use the angular density ρA, but the density ρλ of
eigenvalues on the imaginary axis is ρλ = ∆n/∆y, where ∆n is the number of
eigenvalues per interval ∆y on the imaginary axis. For small angles ϕ one has
∆y = ∆ϕ/a (compare Fig. 7.1), implying that ρλ = a ρA. Thus we conclude

Σlat(a) ≡ lim
m→0

lim
|Λ|→∞

Σlat (a,m, |Λ|) =
π

a3
ρA(0) =

π

a4
ρλ(0) = π ρ(0) ,

(7.77)
where ρ is the density of eigenvalues on the imaginary axis per unit volume.

While the numerical calculation presented in the last section shows the
existence of a nonvanishing chiral condensate from first principles, it cannot
provide insight about an underlying physical mechanism for chiral symmetry
breaking. The Banks–Casher relation (7.77), however, has at least opened the
door to understanding such a mechanism.

A very influential idea is that the chiral condensate is formed through a
“fluid” of weakly interacting topological field configurations such as instantons
(see [17, 18] for reviews). Often, as in the case of instantons, the topological
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configurations are localized and such structures have been nicknamed topolog-
ical lumps. A gauge field configuration which carries topological charge gives
rise to zero eigenvalues according to the index theorem (7.56). For a mix-
ture of topological lumps with different charges one cannot assume that the
zero eigenvalues survive unperturbed. Instead one expects that the eigenval-
ues move in the imaginary direction. A fluid of weakly interacting topological
lumps gives rise to an accumulation of eigenvalues on the imaginary axis
thus building up the density of eigenvalues ρ(0) near the origin. This in turn
gives rise to the nonvanishing chiral condensate via the Banks–Casher relation
(7.77). This mechanism and the possible structure of the topological lumps
have been studied extensively on the lattice and the reviews [42–46] may serve
as a guide to further reading.

The density of eigenvalues can be studied in some detail within random
matrix theory, which we addressed briefly in the preceding section. Fine de-
tails like distribution densities of the smallest eigenvalue, the next-to-smallest
eigenvalue, and so on appear to be universal properties of the spectra of ran-
dom matrices with the symmetry properties of the Dirac operator. There is a
wealth of tools to analyze spectra in this way and thereby disentangle “uni-
versal” features from properties specific for the dynamics of the theory, such
as the condensate value. More about these issues can be found in [47, 48].

7.4 The overlap operator

Up to now our presentation of chiral symmetry on the lattice did not refer to
a particular solution of the Ginsparg–Wilson equation. In this section we close
this gap and introduce the overlap operator. We analyze the locality proper-
ties of the overlap operator and discuss its numerical evaluation. A second
solution of the Ginsparg–Wilson equation, the fixed point Dirac operator, will
be presented in Chap. 9. Furthermore, in Sect. 10.2 we discuss domain wall
fermions which are closely related to the overlap formulation.

7.4.1 Definition of the overlap operator

Originating from the initial papers on the overlap formulation [49–52], Neu-
berger presented the modern form of the overlap Dirac operator in [53] and
showed in [11] that it is a solution of the Ginsparg–Wilson equation (7.29).
Explicitly the overlap Dirac operator is given by

Dov =
1
a

(1 + γ5 sign[H]) , H = γ5 A , (7.78)

where A denotes some suitable γ5-hermitian “kernel” Dirac operator, thus H
is hermitian with real eigenvalues. The operator sign function may be defined
through the spectral representation of the operator (A.51). Alternatively one
may write the overlap operator in the form
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Dov =
1
a

(
1 + γ5H

(
H2

)−1/2
)

. (7.79)

The simplest choice is to use the Wilson Dirac operator for the kernel,

A = aDW − 1(1 + s) , such that Dov =
1
a

(
1 + A (γ5Aγ5A)−1/2

)
, (7.80)

where s is a real parameter with |s| < 1 which can be used to optimize locality
(see below). DW is the massless Wilson Dirac operator (compare (5.51))

DW (n|m)αβ
a b

=
4
a
δαβ δab δn,m − 1

2a

±4∑

µ=±1

(1− γµ)αβ Uµ(n)ab δn+µ̂,m . (7.81)

Since the Wilson Dirac operator is γ5-hermitian (compare (5.76)) so is A, i.e.,
γ5Aγ5 = A†. Thus we have γ5Aγ5A = A†A and the square root in (7.80) is
well defined through the spectral theorem.

In order to see that the overlap operator obeys the Ginsparg–Wilson equa-
tion we insert Dov into (7.29). With the representation (7.78) we find

aDov Dov
† =

1
a

(1 + γ5 sign[H]) (1 + sign[H] γ5)

=
1
a

(1 + γ5 sign[H] + sign[H] γ5 + 1) = Dov + Dov
† . (7.82)

We have taken into account hermiticity, signH = signH†, and the squared
sign function as the unit operator: (signH)2 = 1. Similar to the steps (2.40),
(2.41), and (2.42) performed for the naive Dirac operator, one can expand
the overlap operator (7.80) for small a and show that it approaches the Dirac
operator of the continuum (up to an irrelevant multiplicative constant: D̃ov ≈
iγµpµ/(1 + s) + O(p2)).

The Wilson operator DW used in the construction of the overlap operator
can be replaced by some other lattice Dirac operator which is free of doublers
[54]. This can improve the locality properties of the overlap operator (see next
section) and it may speed up the convergence in the numerical evaluation of
the overlap operator (Sect. 7.4.3) [38]. In this sense the overlap construction
may also be viewed as a projection of a non-chiral lattice Dirac operator onto
a solution of the Ginsparg–Wilson equation.

7.4.2 Locality properties of chiral Dirac operators

While the Wilson Dirac operator (7.81) and thus A involve only nearest
neighbor terms and therefore are sparse matrices, the inverse square root
(γ5Aγ5A)−1/2 leads to a matrix that has nonvanishing entries for all pairs
n,m of lattice sites. Thus Dov(n|m) )= 0 for all n,m and the overlap opera-
tor is not an ultralocal operator. General arguments that this is true for all
solutions of the Ginsparg–Wilson equation were given in [55].
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However, locality is an essential concept for quantum field theories and its
violation is punished by noncausal interactions. Thus one has to understand
in which sense locality has to be manifest for a lattice field theory. A natural
requirement is that the Dirac operator D falls off exponentially independent
of β, i.e., D obeys the bound

∣∣∣D(n|m)αβ
ac

∣∣∣ ≤ C exp (−γ ‖ n − m ‖) , (7.83)

where the constants C and γ are independent of the gauge field. If such a
bound holds, then the interaction range 1/γ is a fixed distance in lattice
units. However, when expressed in physical units, this distance decreases as
we let a → 0 in order to approach the continuum limit. Thus, the interaction
range in physical units, a/γ, shrinks to zero and in the continuum limit we
recover a local field theory. For the overlap operator locality in the sense of
(7.83) was established in [56], both with analytical arguments and a numerical
investigation. There it was also demonstrated that the parameter s in (7.80)
can be tuned to optimize locality.

7.4.3 Numerical evaluation of the overlap operator

Numerically the main problem is to compute the sign function of the operator
H. Formally it is well defined through the spectral theorem:

sign[H] = sign

[
∑

i

λi|i〉〈i|
]

=
∑

i

sign(λi)|i〉〈i| . (7.84)

Only for exactly vanishing eigenvalues of H, a numerically highly improbable
case, one introduces a “tie-breaker,” e.g., a randomly chosen ±1 replacing
signλ. However, for the huge Dirac matrices exact complete diagonalization is
prohibitively expensive and therefore methods based on (7.84) are not applied
except for some few test cases.

In most computations one utilizes instead

sign[H] = H |H|−1 = H
(
H2

)− 1
2 (7.85)

and approximates
(
H2

)−1/2 by either a polynomial in H2 or a ratio of poly-
nomials. The convergence of such an approximations depends on the actual
matrix H, in particular on its eigenvalues, and therefore also on the current
gauge field configuration. Smaller eigenvalues of H will lead to worse con-
vergence in general. As discussed in Sect. 6.2.5 the fluctuations of the real
eigenvalues of the Wilson Dirac operator are nonnegligible. A real eigenvalue
of DW in the vicinity of (1 + s)/a will give rise to a small eigenvalue of H
leading to numerical problems. The situation can be improved by applying
smearing techniques (compare Sect. 6.2.6) or by using for the overlap projec-
tion a different kernel operator which already approximates a solution of the
Ginsparg–Wilson equation.
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For the numerical evaluation of the sign function we discuss here the two
most popular approximation methods and the so-called small eigenmode re-
duction technique. Comparative studies are, e.g., found in [57–59].

Polynomial approximation: The Chebyshev polynomials Tn(x) are or-
thogonal polynomials with regard to the scalar product

(f, g) ≡
∫ 1

−1
dx

f(x)g(x)√
1 − x2

, (7.86)

normalized such that (Tn, Tm) = δnm. A given function r(x) has the series
expansion

r(x) =
∞∑

n=0

cn Tn(x) with cn = (r, Tn) . (7.87)

The series converges pointwise for functions which are continuous in [−1, 1]
up to a finite number of discontinuities in that interval. For the truncated
series

r(x) ≈
N−1∑

n=0

cn Tn(x) , (7.88)

the error is spread smoothly over the interval −1 ≤ x ≤ 1. The coefficients
for the truncated series may be approximated by

cn =
π

N

N∑

k=1

r(xk)Tn(xk), where xk = cos
((

k − 1
2

)
π

N

)
. (7.89)

Following [36, 60] we apply the method to computing the inverse square root
of H2. It can be shown that for |s| ≤ 1, ‖H‖ ≤ 8 (in lattice units). We
denote the (in magnitude) smallest and the largest eigenvalues of H with α
and β. Consequently H2 has eigenvalues λ in an interval [α2, β2 ] ⊂ [0, 64].
The general interval λ ∈ [α2, β2 ] can be mapped into the generic domain
x ∈ [−1, 1] by

x =
2λ− (β2 + α2)

β2 − α2
. (7.90)

For the inverse square root function in question we then find

r(x) =
1√
λ(x)

=
(

1
2
(β2 + α2) +

x

2
(β2 − α2)

)− 1
2

, (7.91)

and with that function the coefficients are computed according to (7.89). The
approximation of the sign function is then obtained by multiplication with H:

sign[H] =
H√
H2

= H
N−1∑

n=0

cn Tn(X) + O (exp (−2N |α/β|)) ,

with X ≡ 2H2 − (β2 + α2)1
β2 − α2

. (7.92)
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The error of the approximation series decreases ∝ exp(−2N |α/β|), i.e., the
number of terms necessary for a requested accuracy grows proportional to
|β/α|. This ratio is just the condition number of H: |λmax/λmin|. To improve
the condition number, the method is usually combined with a “removal” of
small eigenmodes of H, which we discuss below. The series may have several
hundred terms and therefore one should use error reducing techniques like the
Clenshaw recursion relation for summing it [61].

The polynomial approximation is technically simple and quite robust and
may be straightforwardly applied to the force calculations necessary when in-
troducing dynamical fermions (cf. Chap. 8). Theoretical arguments, however,
suggest that the polynomial approximation is less efficient than the rational
approximation methods and indeed it is more sensitive to the condition num-
ber. In a comparison [58] for test examples the polynomial approximation
typically needed between 1.5 and 4 times more matrix–vector multiplications
with the operator H than a rational approximation based on the Zolotarev
method.

Partial fractions á la Zolotarev: In [57, 62] it was suggested to ap-
proximate 1/

√
x2 by a ratio of polynomials. Meanwhile it has become clear

[58, 59, 63] that the best such approximation for the square root on an interval
x2 ∈ [1, β2/α2] is the Zolotarev approximation [64]. In particular,

1√
x2

≈ Q(x2) = d
m∏

n=1

(
x2 + c2n

)

(x2 + c2n−1)
, cn =

sn2 (nK(k′)/(2m + 1); k′)
1 − sn2 (nK(k′)/(2m + 1); k′)

,

(7.93)
with k′ =

√
1 − α/β and K(k′) is the so-called complete elliptic integral and

sn(u; k) denotes a Jacobi elliptic function [65].
The normalization constant d may be fixed by requiring Q(1) = 1. This

results in an approximation to the sign function that is bounded by 1 from
below (on the positive branch). Requesting instead that the approximation
fluctuates symmetrically around 1 corresponds to setting

Q(1) +
∣∣∣∣
β

α

∣∣∣∣Q
(
β2

α2

)
= 2 . (7.94)

The rational function can be decomposed into partial fractions such that

Q(x2) = d (x2 + c2m)
m∑

n=1

bn

x2 + c2n−1
, (7.95)

where the parameters bn may be computed from (7.93) giving

bn =
∏m−1

k=1 (c2k − c2n−1)∏m
k=1,k (=n (c2k−1 − c2n−1)

. (7.96)

In order to apply this to the matrix H we have to scale it by dividing by the
absolute value of its smallest eigenvalue |α|. The final formula for the sign
function, obtained by multiplication with H, thus reads
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sign[H] ≈ d
H

|α|

(
H2

α2
+ c2m

) m∑

n=1

bn

(
H2

α2
+ c2n−1

)−1

. (7.97)

Here α and β denote the smallest and the largest eigenvalues of H and con-
sequently the matrix (H/α)2 has its spectrum in [1, β2/α2], as assumed for
expansion (7.93).

Since in an application of (7.97) one always wants to compute the prod-
uct of the overlap matrix with some vector, one may compute the terms of
(7.97) simultaneously by a multi-shift conjugate gradient solver [66–68], as
discussed already in Chap. 6 in the context of computing the quark propaga-
tors for several masses at once. The necessary overhead is small such that the
computational effort is essentially governed by the smallest |c2n−1|.

Compared to other rational approximations, for a given accuracy, the
Zolotarev method drastically reduces the number of necessary terms in (7.97).

Small eigenmode reduction: In particular the polynomial approxima-
tion is quite sensitive to the condition number of H. For |s| < 1 the eigenvalues
of H are bounded from above, |λmax| ≤ 8 (lattice units), and therefore the
true source of trouble is the smallest eigenvalue, as discussed earlier. There is
a method, however, to deal with cases with very small |λmin|. We know from
the spectral theorem (see Appendix A.5) that

f [H] =
∑

i

f(λi) vi v†
i =

∑

λi<λc

f(λi) vi v†
i +

∑

λi≥λc

f(λi) vi v†
i

≡
∑

λi<λc

f(λi) vi v†
i + f [H(red)] . (7.98)

Here vi denotes the eigenvector for eigenvalue λi. We may therefore split the
problem into two parts. First we determine all eigenvalues below some value
λc as well as their eigenvectors. Then we define a reduced matrix by removing
the small eigenvalue sector explicitly:

H(red) ≡ H −
∑

λi<λc

λi vi v†
i . (7.99)

We compute signH(red) for this reduced operator, which has improved condi-
tion number, by some approximation scheme and invoke (7.98) to reconstruct

sign[H] = sign[H(red)] +
∑

λi<λc

sign(λi) viv
†
i . (7.100)

The overhead due to the necessity to compute the low-eigenvalue sector is not
as disastrous as it may seem. This has to be done only once for a given gauge
configuration. The multiplication of the overlap Dirac operator (for that gauge
configuration) with a vector, however, has to be computed quite often, as it
is usually embedded in, e.g., a conjugate gradient solver used for calculating
the quark propagator. The effort of computing the, say, lowest 20 eigenvalues
is therefore in most situations small in comparison to the total cost.
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8

Dynamical fermions

QCD is the quantum field theory of gluons and quarks. In previous chapters
we have found that for gluons the inclusion of the full dynamical behavior
in Monte Carlo simulations is straightforward, but not so for quarks. In this
chapter we discuss the still missing feature: dynamical quarks.

A calculation with dynamical fermions is a much more challenging enter-
prise than a quenched calculation, and new algorithmic ideas are needed for
the inclusion of the fermion determinant. In this chapter we present some of
these algorithms and techniques. Subsequently we address the coupling-mass
phase diagram and discuss some results of dynamical QCD calculations.

8.1 The many faces of the fermion determinant

In the path integral, whenever the fermions occur bilinearly in the action, the
Grassmann integral can be evaluated in closed form and leads to the fermion
determinant as a factor. As an example we quote the expression for the two-
point function of a flavor triplet meson from Sect. 6.1.5,

〈
OT (n)OT (m)

〉
= − 1

Z

∫
D[U ] e−SG[U ] det[Du] det[Dd]

× tr
[
ΓD−1

u (n|m)ΓD−1
d (m|n)

]
,

Z =
∫
D[U ] e−SG[U ] det[Du] det[Dd] . (8.1)

The meson interpolators are converted into products of quark propagators
and each fermion flavor accounts for one fermion determinant factor. In our
example we take into account the two lightest quarks u and d. In the quenched
approximation, discussed in Sect. 6.1.6, the determinants were put to unity by
hand. This amounts to neglecting vacuum loops of quarks (see Fig. 6.2).

Here we now take into account the effect of the fermions. We stress that
the fermion determinant is a functional of the gauge field and has to be

Gattringer, C., Lang, C.B.: Dynamical Fermions. Lect. Notes Phys. 788, 185–211
(2010)
DOI 10.1007/978-3-642-01850-3 8 c© Springer-Verlag Berlin Heidelberg 2010



186 8 Dynamical Fermions

computed anew for every gauge configuration. Even for lattices of moderate
size the Dirac operator is a huge matrix with N = 12|Λ| rows and columns,
where 12 is the product of color and Dirac entries and |Λ| the total number
of lattice points. This number easily becomes larger than a million. The com-
putational cost of calculating even only one such determinant in closed form,
which formally has N ! contributing terms, is prohibitively high.

8.1.1 The fermion determinant as observable

Let us forget for a moment the technical problem of high computational cost.
For small lattice size and a few configurations a direct determination is cer-
tainly possible. In this case one can try to treat the determinant as part of an
observable and rewrite (8.1) as

〈
O

[
U,ψ, ψ

]〉
=

〈det[Du] det[Dd] O[U ] 〉G
〈det[Du] det[Dd] 〉G

. (8.2)

The expectation value 〈. . . 〉G is computed with the path integral for pure
gauge theory,

〈A〉G =
1

ZG

∫
D[U ] e−SG[U ]A[U ] , ZG =

∫
D[U ] e−SG[U ] . (8.3)

Although the idea of treating the determinant as an observable is appealing,
it has a serious flaw: Depending on the gauge configuration the determinant
may have widely different values, typically covering several orders of magni-
tude. In the sum over all configurations this leads to large fluctuations around
the mean value and thus to an intrinsic instability. As a matter of fact, the
distribution of the gauge configurations according to (8.3) is very different
from that obtained when also the determinant is taken into account in their
Monte Carlo generation.

For that reason, treating the determinant as an observable is numerically
justified only for extremely large statistics. Only in lower dimensions (e.g., for
the 2D Schwinger model) such an approach has led to acceptable results.

8.1.2 The fermion determinant as a weight factor

In order to obtain properly distributed gauge configurations, one tries to in-
clude the determinant as a probability weight factor when generating the
Markov chain of gauge configurations. Thus the gauge fields U are distributed
according to the joint distribution (for two dynamical quark flavors)

1
Z

e−SG[U ] det[Du] det[Dd] . (8.4)

Once the gauge configurations have been generated according to this distribu-
tion, the observables are computed on these gauge configurations as discussed
in Chaps. 4 and 6.
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There is, however, a potential problem: If we want to interpret the contri-
bution of the fermion determinants as a factor in a probability weight it must
be real and nonnegative. In most cases one can use the γ5-hermiticity of D
(see (5.76)), i.e., γ5Dγ5 = D†, to show that the determinant is real:

det[D]∗ = det[D†] = det[γ5 Dγ5] = det[D] . (8.5)

However, the determinant could still be real but negative. A possible physically
justified (see (7.21)) solution is to assume that u and d quarks are mass
degenerate and thus Du = Dd ≡ D. More generally, for an even number of
mass-degenerate quarks the fermion determinant is raised to an even power
and the combined weight factor is nonnegative. No principal obstacle for an
interpretation as probability weight is encountered then. For the case of two
degenerate flavors we can use (8.5) and write

0 ≤ det[D] det[D] = det[D] det[D†] = det[D D†] . (8.6)

In the last step we have rewritten the product of the two determinants for the
two flavors into a single determinant of the hermitian matrix D D†, a form
which will be useful later.

If in addition to γ5-hermiticity the Dirac operator is also chiral (for van-
ishing quark mass), it obeys the Ginsparg–Wilson equation in the form (7.48).
The spectrum for the massless case is then restricted to the Ginsparg–Wilson
circle shown in Fig. 7.1. Since the eigenvalues come in complex conjugate pairs
(cf. (7.45)), the determinant is real and nonnegative. If one introduces a mass
term, the determinant is even strictly positive. Thus for a chiral γ5-hermitian
Dirac operator also odd powers of the fermion determinant give rise to a
proper probability weight.

In special but important cases, e.g., when a chemical potential or a
θ-angle are introduced, γ5-hermiticity does not hold and the determinant may
be even complex. These cases need to be treated with different methods (see
Chap. 12).

8.1.3 Pseudofermions

The central idea in introducing dynamical fermions in the Monte Carlo sam-
pling of gauge fields is based on the analogy between fermionic and bosonic
Gaussian integrals. Consider the vector φ = φR + iφI of N complex variables
and a matrix A with eigenvalues λ which all have a positive real part Reλ> 0.
Then a Gaussian integral equivalent to (5.32) may be evaluated giving the
generating functional

W [χ, χ†] ≡
∫

R2N

N∏

i=1

(dφR,i dφI,i) exp



−
N∑

i,j=1

φ†
iAijφj +

N∑

i=1

φ†
iχi +

N∑

i=1

χ†
iφi





=
πN

|det[A]| exp




N∑

i,j=1

χ†
i (A

−1)ijχj



 . (8.7)



188 8 Dynamical Fermions

Up to an irrelevant factor πN , the result agrees with the corresponding
Grassmann integral, except that the determinant is now in the denomi-
nator. For simplicity we again introduce the abbreviation

∫
D[φR]D[φI ] ≡∫ ∏

i dφR,i dφI,i.
This correspondence has led to the introduction of the so-called pseudo-

fermions. These are bosons with the same number of degrees of freedom as
the fermionic variables. One has used them in two different ways:

• With A ≡ (D D†)−1 one may express the fermion determinant as Gaus-
sian integral of a bosonic field. Used in that context we call the variables
pseudofermion fields (see below).

• With A ≡ (D D†) one may utilize the Gaussian integral in order to es-
timate matrix elements like D−1(n|m) or sums like tr[D−1]. This Monte
Carlo sum introduces statistical noise and therefore we call these variables
noisy pseudofermions used to construct noisy pseudofermion estimators.
These techniques will be discussed in Sect. 8.4.

For a D with nonvanishing eigenvalues we have det[D] = 1/det[D−1]. Thus
one may further utilize the boson-fermion analogy. In [1] the pseudofermion
fields were introduced by observing that from (8.7) one obtains

det[D D†] = π−N

∫
D[φR]D[φI ] e−φ†(D D†)−1φ , (8.8)

where we suppress color, Dirac, flavor, and lattice indices and use
vector/matrix notation for φ and D. One uses this relation to replace the
integral over the fermionic Grassmann variables for two mass-degenerate fla-
vors by an integral over bosonic variables,

∫
D [ψ]D

[
ψ

]
e−ψuDψu−ψdDψd = π−N

∫
D[φR]D[φI ] e−φ†(D D†)−1φ .

(8.9)
In this formulation the number of fermions of a given mass has to be even
in order to guarantee positivity which is necessary for the convergence of
the Gaussian integrals. The effective bosonic interaction contains the inverse
matrix (D D†)−1 and therefore is highly nonlocal.

8.1.4 Effective fermion action

A useful way of thinking about the fermion determinant is to interpret it as
an additional contribution to the gauge action, the so-called effective fermion
action. With (A.54) we write the determinant in the form of an exponential
and obtain

det[D] = exp (tr [ln(D)]) ≡ exp
(
−S eff

F

)
,

S eff
F [U ] = − tr [ln(D)] .

(8.10)
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Here we have assumed that det[D] is real and positive, i.e., D is either a chiral
γ5-hermitian matrix plus a mass term, or we work with two flavors and D is
replaced by DD† according to (8.6).

In contrast to the local gauge action, the effective fermion action is a very
nonlocal quantity and connects essentially all gauge variables of the system
with each other. Here we use the terms nonlocal and local to distinguish
whether coupling is to all variables of the system or only to field variables in
the neighborhood. The latter is often called ultralocal to distinguish it from
being local only in the continuum limit, for which it is sufficient to show that
the coupling to distant field variables decreases exponentially with distance
(compare the discussion of the locality properties for the Dirac operator in
Sect. 7.4.2).

Generating gauge configurations distributed according to the combined
Boltzmann weight factor

exp(−S[U ]) with S[U ] = SG[U ] + S eff
F [U ] (8.11)

is a possible way to include dynamical fermions. For generating sequences of
gauge configurations according to the distribution (8.11) we need the change
of the total action

exp (−S[U ′] + S[U ]) = exp (−SG[U ′] + SG[U ]) exp
(
−S eff

F [U ′] + S eff
F [U ]

)

(8.12)
for the Metropolis step, where we decide whether to accept the candidate
configuration U ′ or reject it. Computing the factor from the gauge action
is simple (compare Sect. 4.1). The second term, coming from the effective
fermion action, requires new techniques.

8.1.5 First steps toward updating with fermions

Before we describe modern fermion algorithms in more detail, let us briefly
discuss some general ideas for the update. Different methods differ in the way
the action change is determined and in the dependence of the computer time
on the volume of the lattice and the fermion mass:

• Global changes of the gauge field, accepting with the determinant as weight
factor: One estimates the ratio

exp
(
−∆S eff

F

)
≡ exp

(
−S eff

F [U ′] + S eff
F [U ]

)
= det

[
D[U ′]
D[U ]

]
(8.13)

by stochastic methods as discussed in Sect. 8.4.
• Small steps, estimating ∆S eff

F by an approximation essentially linear in
the change of the gauge variables. Due to this approximation errors may
accumulate and one has to rely on corrective measures.

Both paths have been pursued.
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Updating, e.g., a single gauge link variable in a Metropolis step requires
the determination of the action change. For this one has to compute D−1

acting on a vector, usually employing a conjugate gradient algorithm (see
Sect. 8.2.3). Assuming that the necessary number of iterations depends only
weakly on the volume, one such inversion needs computer time proportional to
the lattice volume. The acceptance may be reasonable, but this computation
has to be repeated for each change of a gauge variable, and therefore the full
algorithmic cost grows with V 2.

On the other hand, considering a global update, where all link variables
are altered (or a partial-global update, cf. [2]), the change of the action will
be typically proportional to the volume and the acceptance rate drops expo-
nentially with the volume. Thus one has to decrease the step size inversely
proportional to the volume, which again leads to a computational effort grow-
ing with the volume squared.

However, there are algorithms with much better performance, based on
the pseudofermion field concept. The idea is to choose changes of the gauge
field not completely randomly but along directions determined by the action.
This introduces a bias, but there are methods to effectively undo this bias
in the updating such that the detailed balance is respected. The so-called
hybrid Monte Carlo (HMC) algorithm is such a method and will be discussed
next.

8.2 Hybrid Monte Carlo

The updating of the gauge field variables in a distribution PS(U) ∝ exp(−S)
defined through the gauge field action and the effective fermionic action has
two parts. First one has to find a reasonable candidate for a change of
the gauge variables. This introduces an a priori selection probability factor
T0(U ′|U) (compare Sect. 4.1.3). In a second step one has to decide whether to
accept or reject the new configuration, according to an acceptance probability
TA(U ′|U). Together the two steps provide the overall transition probability

T (U ′|U) = TA(U ′|U) T0(U ′|U) . (8.14)

The detailed balance condition (4.15) for T (U ′|U) may be obeyed with a
Metropolis accept–reject probability following (4.16).

If one considers only the gauge field action both steps are simple since
the gauge action is ultralocal (cf. Chap. 4). Thus computing the change of the
gauge action is cheap and one makes small changes of variables, maybe even
just for one link, and then decides whether to accept or reject the change.

Applying this to the full action including fermions is computationally ex-
pensive since the determinant leads to a nonlocal S eff and thus computing
the change of the action involves all link variables, even if only a single gauge
link is altered. One therefore attempts to update many variables in one step.
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Doing this in a naive manner typically leads to large changes of the action and
to extremely small acceptance probability and thus is not efficient. Ideally, the
acceptance probability should be large and only weakly volume dependent. At
the same time the autocorrelation between subsequent configurations should
be as small as possible.

There are various strategies to find a new configuration with a reasonable
chance to be accepted. We now discuss the differential equation approach.

8.2.1 Molecular dynamics leapfrog evolution

Let us first look at the basic concept: A Hamiltonian process developing in
computer time (Markov time) τ . In order to focus on the central idea we dis-
cuss the method first for a real scalar field Q. For simplicity of presentation
we suppress the lattice index for this field and employ vector/matrix nota-
tion. Using the gauge variables leads to technical complications which will be
addressed later. Conjugate to the bosonic field variables Q we introduce real
momenta P and write the formula for the vacuum expectation value of some
observable O as

〈O〉Q =
∫
D[Q] exp(−S[Q]) O[Q]∫

D[Q] exp(−S[Q])

=
∫
D[Q]D[P ] exp(− 1

2P 2 − S[Q]) O[Q]∫
D[Q]D[P ] exp(− 1

2P 2 − S[Q])
= 〈O〉P,Q .

(8.15)

To give an example for our use of vector/matrix notation, we remark that P 2

stands for
P 2 =

∑

n∈Λ
P (n)2 . (8.16)

The second form in (8.15) is equivalent since in the expectation value the
Gaussian integrals for P cancel. In the large volume limit this new form rep-
resents a microcanonical ensemble of a classical (nonrelativistic) system with
Hamiltonian

H[Q,P ] ≡ 1
2
P 2 + S[Q] . (8.17)

The classical equations of motion (in computer time) for this system are

Ṗ = −∂H

∂Q
= − ∂S

∂Q
,

Q̇ =
∂H

∂P
= P .

(8.18)

The notation used for the derivatives is a shorthand notation for the derivative
with respect to the field value at a single lattice site in accordance with our
vector/matrix convention.
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The Eqs. (8.18) are called molecular dynamics equations since they deter-
mine the time evolution of a classical system of particles. The Hamiltonian
is a constant of motion, and the path of the configurations (P, Q) lies on
a hypersurface of constant energy in phase space and thus would be always
accepted if the evolution of (8.18) could be done exactly.

The Eqs. (8.18) can be evolved numerically, and according to (8.15) we
may extract the requested expectation values 〈O〉Q from the Q–P ensemble.
We stress that one also has to show that the evolution gives rise to an update
which is ergodic for the fields of interest, i.e., the fields Q in this case.

Using the microcanonical evolution for pure gauge theories has been sug-
gested in [3], for fermions in [4]. Such molecular dynamics evolution equations
are also closely related to stochastic differential equations like the Langevin
equation, where the classical evolution is disturbed by a noise term. The ran-
dom noise gives rise to the quantum fluctuations of the quantum field theory
[5, 6]. Changing the conjugate momenta randomly, according to the Gaussian
distribution, and pursuing the microcanonical path in between these changes
led to the so-called hybrid algorithms [7, 8].

The numerical implementation of (8.18) introduces a discrete step size
ε ≡ ∆τ and numerical errors are unavoidable. A simple linear evolution
scheme introduces errors O(ε2). Either one finds a way to extrapolate the
results to vanishing step size or one introduces a corrective step. This second
idea leads to the hybrid Monte Carlo algorithm.

We call a sequence of small steps following the approximate molecular
dynamics evolution a trajectory. For the HMC method one first constructs a
new configuration by evolution along such a trajectory and then decides in a
Metropolis step whether to accept the new configuration.

It will turn out that for the detailed balance condition (4.15) we need to
have two requirements on the molecular dynamics trajectory:

• Area preservation of the integration measure D[Q]D[P ].
• Reversibility of the trajectory, Tmd(P ′, Q′|P,Q) = Tmd(−P,Q| − P ′, Q′).

Reversibility can be obtained by using the so-called leapfrog integration
scheme (assuming perfect arithmetic precision): Whereas Q is evolved in n
steps of length ε, the conjugate momenta start with a half-step ε/2, then
(n − 1) full steps and finally again a half-step. We discuss the two required
properties, area preservation and reversibility, for a single such step

Q(0) −→ Q(ε) ,

P (0) → P ( ε2 ) → P (ε) ,
(8.19)

and longer trajectories are built by combining several such steps. The simplest
Euler integration scheme corresponds to the equations
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Q(0) P (0)
↓

↓ P
(
ε
2

)
= P (0) − ∂S

∂Q

∣∣∣∣
Q(0)

ε

2
↓

Q(ε) = Q(0) + P
(
ε
2

)
ε P (ε) = P

(
ε
2

)
− ∂S

∂Q

∣∣∣∣
Q(ε)

ε

2
.

(8.20)

Area preservation of the integration can be shown from the product of Jaco-
bians along this sequence1:

det
[
∂(P1, Q1)
∂(P0, Q0)

]
= det

[
∂(P1, Q1)
∂(P1/2, Q1)

∂(P1/2, Q1)
∂(P1/2, Q0)

∂(P1/2, Q0)
∂(P0, Q0)

]
. (8.21)

The right-hand side factorizes into three determinants of triangular ma-
trices, e.g.,

det
[
∂(P1/2, Q0)
∂(P0, Q0)

]
= det

[
1 . . .
0 1

]
= 1 , (8.22)

and similarly for the other Jacobians. Thus the total Jacobian is 1 and the
integration measure is invariant.

In order to inspect reversibility let us first combine the Eqs. (8.20) starting
at time 0 from some initial value (Q0, P0). We obtain

Q1 = Q0 + P0 ε−
1
2

∂S

∂Q

∣∣∣∣
Q0

ε2 ,

P1 = P0 −
1
2

(
∂S

∂Q

∣∣∣∣
Q0

+
∂S

∂Q

∣∣∣∣
Q1

)
ε . (8.23)

Making a step backwards corresponds to starting at (Q1, P1) and applying
the equations with a negative step size −ε. We find

Q(ε− ε) = Q0 = Q1 − P1 ε−
1
2

∂S

∂Q

∣∣∣∣
Q1

ε2

= Q1 − P0 ε +
1
2

(
∂S

∂Q

∣∣∣∣
Q0

+
∂S

∂Q

∣∣∣∣
Q1

)
ε2 − 1

2
∂S

∂Q

∣∣∣∣
Q1

ε2

= Q1 − P0 ε +
1
2

∂S

∂Q

∣∣∣∣
Q0

ε2 = Q0 ,

P (ε− ε) = P0 = P1 +

(
∂S

∂Q

∣∣∣∣
Q1

+
1
2

∂S

∂Q

∣∣∣∣
Q0

)
ε = P0 .

(8.24)

Thus we end up where we have started and reversibility is established. In
the equation time always multiplies P and thus this is equivalent to stating

1For notational convenience we use Q(nε) ≡ Qn and P (nε) ≡ Qn.
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that in the evolution Tmd(P ′, Q′|P,Q) = Tmd(−P,Q| − P ′, Q′), as wanted.
Actually, the sign of P may be reversed, since P enters quadratically in the
distributions, and thus Tmd(P ′, Q′|P,Q) = Tmd(P,Q|P ′, Q′).

One may combine n leapfrog steps (8.23) to build a trajectory of length
n ε ≈ 1. This amounts to inserting a sequence of full steps for both Q and P
in (8.20). The discretization error for the half steps is O(ε2), for the normal
steps O(ε3). The number of such steps in typical calculations is O(100).

8.2.2 Completing with an accept–reject step

Once a new configuration proposal has been obtained as the endpoint of a
leapfrog molecular dynamics trajectory, it is accepted only with a probability
depending on the change of the total Boltzmann factor. This is necessary since
the evolution of (8.18) is not exact due to the O(ε2) errors. The full HMC
step thus consists of the following parts:

• Given a configuration Q, generate a set of conjugate momenta P from a
Gaussian distribution PG(P ) ∝ exp(−P 2/2).

• The molecular dynamics trajectory leads from a configuration (P, Q) to
a configuration (P (τ + n ε), Q(τ + n ε)) ≡ (P ′, Q′). As discussed above,
this is a deterministic process obeying

Tmd(P ′, Q′|P,Q) = Tmd(−P,Q|−P ′, Q′) . (8.25)

The new configuration is accepted with probability (see (4.16))

TA(P ′, Q′|P,Q) = min
(

1,
exp(−H[P ′, Q′])
exp(−H[P,Q])

)
. (8.26)

We now prove that this is a valid Metropolis step in the Markov sequence
of configurations, i.e., we show detailed balance for the algorithm. The total
probability to move from Q to Q′ results from integrating over all P and P ′,

T (Q′|Q) =
∫

D[P ]D[P ′] TA(P ′, Q′|P,Q)Tmd(P ′, Q′|P,Q) e−P 2/2 . (8.27)

We then transform

TA(P ′, Q′|P,Q) = min

(
1,

e−P ′2/2−S[Q′]

e−P 2/2−S[Q]

)

= e−P ′2/2−S[Q′]+P 2/2+S[Q] min

(
e−P 2/2−S[Q]

e−P ′2/2−S[Q′]
, 1

)

= e−P ′2/2−S[Q′]+P 2/2+S[Q] TA(P,Q|P ′, Q′)

= e−P ′2/2−S[Q′]+P 2/2+S[Q] TA(−P,Q|−P ′, Q′) .

(8.28)
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In the last step we have used that TA is obviously even in the momentum vari-
ables. Taking into account the reversibility (8.25) of the molecular dynamics
evolution, the integral (8.27) becomes

T (Q′|Q) =

=
∫
D[P ]D[P ′] TA(−P,Q| −P ′, Q′)Tmd(−P,Q| −P ′, Q′) e−S[Q′]+S[Q]−P ′2/2

=
∫
D[P ]D[P ′] TA(P,Q|P ′, Q′)Tmd(P,Q|P ′, Q′) e−S[Q′]+S[Q]−P ′2/2 .

(8.29)
The second step is possible, since the integration measure is invariant under a
sign change of all momenta. Multiplication with exp(−S[Q]) and comparing
with (8.27) then gives

e−S[Q] T (Q′|Q) = e−S[Q′] T (Q|Q′) . (8.30)

This is the detailed balance equation (4.15) for the distribution probability
exp(−S[Q]) and the proof is complete.

If the molecular dynamics equations were implemented numerically ex-
actly, then H[P ′, Q′] = H[P,Q] and the acceptance probability (8.26) becomes
equal to 1. The Monte Carlo step therefore corrects for numerical errors in
the discretization. There is more to that, however. Sometimes it may be com-
putationally advantageous to evolve the molecular dynamics trajectory with
another, e.g., simpler action Ŝ and to accept the change using the desired
action S in (8.26). This is perfectly legal. It will affect the acceptance rate,
though, which may become very small if the actions differ in any significant
manner.

8.2.3 Implementing HMC for gauge fields and fermions

Let us now apply the HMC-update to QCD with two dynamical, mass-
degenerate flavors of quarks. Using pseudofermions as in (8.8) for rewriting
the determinant, we have a system of pseudofermion fields φ and gauge fields
U distributed with the Boltzmann weight factor

exp (−S[U ]) with S[U ] = SG[U ] − φ†(D D†)−1φ . (8.31)

The pseudofermions φ have the same indices as the Dirac field ψ, i.e., color–,
Dirac–, and space–time indices. The fields φ and U are updated alternately
according to the distribution (8.31).

The update of the fields φ is simple. In fact, φ may be easily created by
generating a complex vector χ with Gaussian distribution exp(−χ†χ) and
then determining φ = Dχ. The Jacobian due to this transformation is not
relevant since the gauge fields are not changed in this step.

Once φ has been constructed, the gauge fields U are updated in a molecular
dynamics trajectory treating φ as an external, constant field. This leads to a
new candidate gauge configuration, which is then accepted or rejected in the
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final Metropolis step. This procedure of constructing a field φ, evolving U ,
and closing with a Metropolis step, is iterated.

We have to take into account that the gauge fields U are group elements
whereas so far we have presented the molecular dynamics algorithm for vari-
ables in flat space. Before turning to SU(3) let us discuss the simpler abelian
case of the gauge group U(1), where the link variables can be written as
U = exp(iQ). We use as conjugate variables the real number Q and a cor-
responding real momentum P . The Hamiltonian equations are identical to
(8.18). Let us consider the discretizations of the second of those,

Q̇ = P → Q(ε) = Q(0) + P (0) ε (8.32)
→ −i ln U(ε) = i lnU(0) + P (0) ε → U(ε) = ei P (0) ε U(0) .

Integrating this differential equations might have led Q out of the principal
value interval of the group. For U(1) this is no problem, since the relation
U = exp(iQ) automatically projects back.

Let us now implement the algorithm for the non-abelian gauge group
SU(3). We can write each link variable as, cf. (A.2),

U = exp

(
i

8∑

i=1

ω(i) Ti

)
≡ exp(iQ) . (8.33)

As for the case of U(1) our Q are identified with elements of the algebra, i.e.,
they are traceless hermitian matrices parametrized by the real variables ω(i).

For each link variable Uµ(n) there are eight real momentum variables
P (i)

µ (n) conjugate to the parameters ω(i)
µ (n), where n ∈ Λ is the space–time

index. We may combine them to an element of the algebra of SU(3) by sum-
ming them with the generators Ti,

Pµ(n) =
8∑

i=1

P (i)
µ (n)Ti . (8.34)

Thus the Pµ(n) are also traceless and hermitian matrices. The Hamilton equa-
tions involve the sum (use (A.3))

1
2

∑

n,µ,i

(
P (i)

µ (n)
)2

=
∑

n,µ

tr
[
Pµ(n)2

]
. (8.35)

We will formulate the algorithm in terms of the matrices Pµ(n) and Uµ(n).
For the molecular dynamics evolution we also need the derivative of the

action with respect to the Q. Derivatives always live in the tangential space
of a manifold. For unitary groups this is the algebra (see Appendix A.1) and
derivatives thus are along some path in the algebra. The derivative of some
function f(U) of a group element in the algebra direction Ti may be defined
as,2

2This definition can be understood from differentiating ln(U) = i
∑

k ω(k)Tk with

respect to ω(i). We remark that this definition is not unique, but the outcome of
(8.36) is, if f(U) is a class function.
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∇(i) f(U) ≡ ∂f(U)
∂ω(i)

=
∂

∂ω
f(eiω Ti U)

∣∣∣∣
ω=0

. (8.36)

In this way we find, e.g., (A, B ∈ SU(3))

∇(i) AU B = iATi U B ,

∇(i) AU U B = iATi U U B + iAU Ti U B ,
(8.37)

and so on. The leapfrog discretized molecular dynamics equations (8.20) for
altogether n steps then become:

1. Pseudofermions
Generate the pseudofermion field φ = Dχ, where χ is distributed
according to exp(−χ†χ).

2. Conjugate fields
Given a gauge configuration U0 generate P0 (eight real numbers for
each (n, µ)) according to the Gaussian distribution exp

(
− tr

[
P 2

])
.

3. Initial step
P 1

2
= P0 −

ε

2
F [U, φ]

∣∣∣
U0

.

4. Intermediate steps
Full steps for k = 1, . . . , n − 1:
Uk = exp

(
i εPk− 1

2

)
Uk−1 , Pk+ 1

2
= Pk− 1

2
− εF [U, φ]

∣∣∣
Uk

.

5. Final step
Un = exp

(
i εPn− 1

2

)
Un−1 , Pn = Pn− 1

2
− ε

2
F [U, φ]

∣∣∣
Un

.

6. Monte Carlo step
Accept–reject step at the end of the trajectory: accept the changes
if a random number r ∈ [0, 1) is smaller than

exp
(
tr

[
P 2

]
− tr

[
P ′2] + SG[U ] − SG[U ′]

+φ† (
(D D†)−1 − (D′ D′†)−1

)
φ
)

. (8.38)

In these equations

F [U, φ] =
8∑

i=1

Ti ∇(i)
(
SG[U ] + φ†(D D†)−1φ

)
∈ su(3) (8.39)

denotes the driving force, an element of the algebra su(3).
For the pseudofermion contribution in the accept–reject step one re-uses

the vector (D′ D′†)−1φ that has been computed for the force in step (5).
A technical problem is the exponentiation exp(i εP ) in step (4) of (8.38)

which maps an element of the algebra to a group element. This may be done
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either by a series expansion or, faster, by utilizing the Cayley–Hamilton rela-
tion as done in [9].

The force term (8.39) involves derivatives with regard to the algebra ele-
ments. As an example let us determine the force due to the contribution from
the Wilson gauge action (4.20) involving a particular link U . It is given by

− β

6
tr

[
U A + A† U†] , (8.40)

where A denotes the sum of adjacent staples (4.20). The derivative of the
trace-term then is

∇(i) tr
[
U A + A† U†] = tr

[
iTi U A − iA† U† Ti

]
= tr

[
iTi

(
U A − A† U†)] .

(8.41)
The resulting force is

− β

6

8∑

i=1

Ti tr
[
iTi

(
U A − A† U†)] = − β

12
i
(
U A − A† U†) . (8.42)

We have used that i (U A − A† U†) is traceless and hermitian and thus is a
linear combination of the Tj . For such a sum one has the identity

∑

j

Tj tr

[
Tj

∑

k

ckTk

]
=

1
2

∑

j

cjTj . (8.43)

The trace projects out the contribution of Tj (introducing a factor of 1/2),
and the sum reconstructs the expression.

The contribution of the fermion action to the force requires the evaluation
of (we use ∂ M−1/∂ ω = −M−1(∂ M/∂ ω)M−1 here)

∇(i)
(
φ† (

D D†)−1
φ
)

= −φ† (
D D†)−1

(
∇(i)D D†

) (
D D†)−1

φ

= −
(
(D D†)−1φ

)†
(

∂D

∂ω(i)
D† + D

∂D†

∂ω(i)

) (
(D D†)−1φ

)
.

(8.44)

In each substep of the trajectory one therefore has to compute the derivative of
D and the inverse of D D†, which is the time-consuming part of the algorithm.

In computing the derivative of the Dirac operator one has to observe
non-commutativity of the group elements. Some Dirac operators involve con-
tributions, where a link variable occurs more than once. An obvious example
is the overlap operator in a rational or series approximation (see Sect. 7.4.3).
In such a case one has to be particularly careful in determining the derivative.

The Wilson Dirac operator (5.51) is simply linear in the gauge field vari-
ables and in this case computing the derivative is straightforward. We find for
the contribution of a particular link Uµ(k)
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∂D(n|m)

∂ω(i)
µ (k)

= −i
1− γµ

2a
Ti Uµ(k) δn+µ̂,mδn,k + i

1 + γµ

2a
Uµ(k)† Ti δn−µ̂,mδm,k .

(8.45)
Due to the Metropolis decision at the end of each trajectory the HMC

algorithm is exact. Any numerical error done in the discretization is “repaired”
by the probabilistic accept–reject step. However, the acceptance rate may
become low. One therefore has to adjust the step size ε to prevent too large
aberrations. Typical numbers are 50–100 steps for a complete trajectory with
an integrated time of n ε ≈ 1. The estimated computational effort for the
HMC algorithms grows only like ∝ V 5/4 [10, 11].

8.3 Other algorithmic ideas

8.3.1 The R-algorithm

The HMC algorithm is exact. However, in the way presented here it is ap-
plicable only for positive definite fermion actions (like the overlap action) or
for duplicated number of fermion species.3 It evolved out of earlier updat-
ing methods, which also used microcanonical (or Langevin) type differential
equations, without the correcting Monte Carlo step.

In all of the so-called hybrid algorithms [7] the system follows a molecular
dynamics trajectory with refreshing the conjugate momenta regularly. This
process is equivalent to an evolution according to a stochastic differential
equation. It has been argued that systems out of equilibrium will be driven
toward equilibrium and stay there during the updating process. The crucial
problem is the necessary discretization, which introduces systematic errors in
some order of the discretization time step.

One such method, the so-called R-algorithm [12], is advocated for Kogut–
Susskind or staggered fermions (cf. Chap. 10). The central idea is to use the
effective action discussed in (8.10). The molecular dynamics updating follows
steps like those discussed earlier. The change of the effective action is esti-
mated stochastically [13] with the help of noisy pseudofermions. The change
of the effective fermion action due to a change of the gauge variable then is

∆S eff
F = S eff

F [Uµ(n)′] − S eff
F [Uµ(n)]

=
∑

n,µ,i

∂S eff
F [Uµ(n)]

∂ω(i)
µ (n)

∆ω(i)
µ (n) + O

(
∆ω(i)

µ (n)
)2

.
(8.46)

For the derivative of the effective action we obtain

∂S eff
F

∂ω(i)
µ (n)

= −∂ tr[ln(D[U ])]

∂ω(i)
µ (n)

= − tr

[
D[U ]−1 ∂D[U ]

∂ω(i)
µ (n)

]
. (8.47)

3Suggestions how to include single fermion species will be discussed in Sect. 8.3.3.
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Note that the arguments are matrices and these are usually not commutative.
However, the cyclicity property of the trace simplifies the expression. For ac-
tions where the link variables occur linearly, the derivative of D is particularly
simple.

As there is no correction MC step, the method will show a dependence on
the chosen value of the discretization time step ε. By using clever modifica-
tions the errors can be made O(ε2). This dependence has to be dealt with by
repeating the computations for different values and of ε extrapolating to 0.

At each time step one computes pseudofermions φ = M†χ from Gaussian
distributed random vectors χ. More details can be found in [12].

8.3.2 Partial updates

For updating methods that are based on evolution equations (like the HMC
and the R-algorithm or any such method working with Langevin-type dif-
ferential equations) one has to calculate the force term. This becomes quite
involved for Ginsparg–Wilson-type Dirac operators. There one has to use com-
putationally costly algorithms already for evaluating D itself.

It is therefore tempting to shortcut the update by updating larger chunks of
gauge variables at once. However, as has been argued earlier, this may run into
acceptance problems when working at large volumes: A naive implementation
will lead to a numerical cost of O(V 2). One therefore has to invest some effort
in providing better suggestions for the change of gauge variables, similar to
the ideas originally leading to the hybrid algorithms.

It has been advocated [14, 15] to interleave gauge field updates on part of
the lattice based on a local gauge action that approximates in some way the
effect of the fermionic action. This may be done, e.g., by considering a set of
closed gauge loops with coefficients properly tuned. This partial-global change
of variables then undergoes an accept/reject step, where the ratio of determi-
nants is estimated stochastically. Since the change of the effective action may
be large, one has to be particularly careful in getting a reliable estimate of
that ratio. One therefore invokes techniques like polynomial approximations,
preconditioning, and multi-pseudofermions.

For real, positive determinants it is then possible to simulate single fermion
species. This is true for Ginsparg–Wilson operators, which are normal matrices
with eigenvalues that have positive real part. For such operators one may use a
pseudofermion action of the form (φ,D−1φ) and Gaussian χ with φ =

√
Dχ to

generate the correct distribution. For taking the square root one uses methods
like that discussed for the construction of the overlap operator.

8.3.3 Polynomial and rational HMC

In the standard HMC algorithm the Dirac operator enters quadratically as
D D† to guarantee positivity of the real part of all eigenvalues necessary for
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the convergence of the pseudofermion Gaussian integral. Thus in that form
only even numbers of fermions can be simulated.

If det[D] is positive, there is a way to circumvent this restriction. One ap-
proximates D−1 by an operator T T † for the HMC trajectory calculations and
corrects for the approximation in the accept–reject step. The approximations
suggested are either by polynomials [16–18] or by rational functions [19–22],
in the spirit of the evaluations of the overlap operator in Chap. 7.

As an example we discuss the suggestions of [18]. The inverse of the Dirac
operator is approximated by an even polynomial,

D−1 ≈ P2n(D) =
n∏

k=1

(D − z2k−1)(D − z∗2k−1) , (8.48)

with zk = 1 − exp(i 2π k/(2n + 1)). Assuming γ5-hermiticity one has

det[D − z∗k] = det[γ5 D† γ5 − z∗k] = det[D − zk]∗ , (8.49)

and we therefore may split P2n into a product

P2n(D) = Tn(D)T †
n(D) with Tn(D) =

n∏

k=1

(D − z2k−1) . (8.50)

The correct determinant is

det[D] = C
(
det[T †

n Tn]
)−1

with C = det[D T †
nTn] . (8.51)

The HMC trajectory is then computed using a pseudofermion action

S = −φ† T †
n(D)Tn(D)φ , (8.52)

thus providing for the second factor in (8.51), whereas the correction factor C
is dealt with in the Metropolis accept–reject step at the end of the trajectory.

Such methods allow one to work with odd numbers of quark flavors using
the exact MC algorithm.

8.3.4 Multi-pseudofermions and UV-filtering

In the accept–reject Metropolis step, as it is necessary at the end of each
HMC trajectory or in (partial) global algorithms, the stochastic determination
with noisy pseudofermion estimation introduces additional noise. Although
formally correct, the induced fluctuations of the fermionic force may destabi-
lize the algorithm [2, 20, 23], enforcing smaller step sizes.

A possible way to reduce the noise of the stochastic estimator is to use
more than one set of pseudofermion variables. Assuming positivity for M one
uses the identity
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det[M ] =
(
det[M1/n]

)n
. (8.53)

The stochastic estimator then is

det[M ] ∝
n∏

k=1

∫
D[φR]D[φI ]e−φ† M−1/n φ , (8.54)

where M is either a positive definite Dirac operator or M = D D†. The matrix
M−1/n can be approximated by a rational function or a polynomial in M .

A variant of this method [24] splits the determinant

det[M ] = det[M ′] det[M ′−1 M ] (8.55)

with separate pseudofermion fields for both factors. By choosing different
parameters for the matrices M and M ′ one may improve the updating per-
formance; the step size can be increased while the acceptance rate remains
stable. In the applications one chooses different mass parameters for the two
components; thus the method has also been called mass preconditioning.

Another method to improve the estimate of the ratio of determinants is to
introduce an UV-filter [25]. The idea is to reduce the spread of the eigenvalues
of the operator to be stochastically estimated. One defines a reduced matrix

Dm,r = D ef(D) , (8.56)

where f(D) is chosen to be a suitable low-order polynomial in D with real
coefficients such that the eigenvalues of Dm,r are concentrated around z = 1
in the complex plane, i.e., ef(D) roughly approximates D−1. In the acceptance
step one then computes (using γ5-hermiticity)

det[D† D]new

det[D† D]old
= (8.57)

exp (−2 tr [f(D)new] + 2 tr [f(D)old])
det[D†

m,r Dm,r]new

det[D†
m,r Dm,r]old

.

The computation of the trace over polynomials of D is possible for simple
Dirac operators but may be an obstacle for extended ones.

8.3.5 Further developments

Both the multi-pseudofermion method and the polynomial approximation are
in spirit related to the earlier suggestion of a multiboson algorithm [26].

Depending on the Dirac operator there are also various methods of
preconditioning (see also Sect. 6.2.4). Mass preconditioning and variants thereof
are one possible improvement. For operators involving only nearest neighbor
couplings one may split the lattice into even and odd sites and in this way
simplify the calculations. This method is called even-odd preconditioning.
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Another hierarchically organized approach splits the lattice into non-
overlapping domains and solves the system on the sub-domains. This so-called
Schwarz alternating procedure [27–29] has been tested for both precondition-
ing and dynamical fermion algorithms. It is a domain decomposition method
for solving elliptic differential equations (introduced already in the nineteenth
century).

Although at least for HMC algorithms one expects the necessary computer
time to grow with V 5/4 for a given set of couplings, the growth as a function of
the lattice spacing or the quark mass is not as clear. Since we expect the quark
mass to be proportional to the mass squared of the lightest pseudoscalar, it is
useful to discuss the computational cost in such units. The expected functional
form for the numerical cost is [30, 31]

$$$ ∝ ACACAC ∝ !!! ∝ LzL a−za Mzπ
π . (8.58)

Various aspects enter such a consideration. As mentioned the volume scales
with zL . 5. The condition number of the Dirac operator matrix decreases
with the pion mass, thus the CGR solver needs more iterations. The step size
in the HMC trajectory will have to be decreased and the autocorrelation time
may increase. The various studies with, e.g., the Wilson fermion action have
led to values of [30] za . 7 and zπ . 6, but also smaller values O(3− 4) have
been quoted [31].

The field of algorithms for dynamical fermions has been evolving over
the years and the development has not yet ceased. Various ideas have been
presented, which are not discussed here. Other ideas are certain to come and
we advise to check the proceedings of the yearly lattice conferences.

8.4 Other techniques using pseudofermions

In Sect. 8.1.3 we have remarked that pseudofermion fields are used in noisy
estimator techniques designed for evaluating fermionic observables. The start-
ing point is the structural similarity between bosonic and fermionic generating
functionals, (5.32) and (8.7).

Let us start discussing the idea of noisy estimators by using an example of
high importance: the value of the fermion condensate 〈ψψ〉. In Chap. 7 we have
found that this is essentially given by tr[D−1]. Straightforward calculation of
the trace requires the determination of propagators for 12 |Λ| point sources,
clearly an impossible task. For the noisy estimator approach we consider a set
of uncorrelated complex random numbers χi ≡ χR,i +iχI,i with unit variance,

〈χi χ
∗
j 〉χ = δij . (8.59)

For example, we may choose for the χi the Gaussian distribution

〈. . .〉χ = π−N

∫
D[χR]D[χI ] exp

(
−χ†χ

)
. . . . (8.60)
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We may approximate this integral by an average over K random vectors χ(k)

with entries χ(k)
i distributed according to the probability density (8.60),

δij = 〈χi χ
∗
j 〉χ . 1

K

K∑

k=1

χ(k)
i χ(k)∗

j . (8.61)

Using this one can estimate the trace

tr[D−1] =
∑

i,j

(D−1)jiδij ≈ 1
K

K∑

k=1

χ(k)† D−1 χ(k) . (8.62)

Again the random variables agree in number with the fermionic degrees of
freedom. The number K of noise vectors considered depends on the desired
accuracy of the estimate.

Gaussian noisy pseudofermions may also be utilized to evaluate the change
of the fermionic effective action [32], which is required for the Monte Carlo
update algorithm. For matrices M with strictly positive real part of the eigen-
values we have

det[M ] =
∫
D[χR]D[χI ] exp

(
−χ†χ

)
exp

(
−χ† (

M−1 − 1
)
χ
)

∫
D[χR]D[χI ] exp (−χ†χ)

=
〈
exp

(
−χ† (

M−1 − 1
)
χ
)〉

χ
.

(8.63)

This identity follows from (8.7) and may be used to determine directly the
change of the effective 2-flavor action:

exp(−δSF,eff) = det[(D′ D′†)(D D†)−1] = det[D′† (D D†)−1 D′]

=
〈
exp

(
−χ† (

D′−1 D D†(D′†)−1 − 1
)
χ
)〉

χ

=
〈
exp

(
−χ† D′−1

(
D D† − D′ D′†) (D′†)−1χ

)〉
χ

.

(8.64)

Again 〈. . .〉χ is approximated by a finite number of noise vectors.
It has been suggested in [33] to replace the sum over many φ-ensembles

by just one individual for the Monte Carlo acceptance decision. Determining
that ratio for the updating step either way is correct in the average. However,
this type of approach involves a Monte Carlo sum within a Monte Carlo sum
and, as has been discussed in, e.g., [34], corresponds to an updating algorithm
where the computer time grows with the square of the lattice volume at least,
not considering other effects like critical slowing down.

Whenever one wants a precise calculation of quark propagators, one uses
numerical inverters. However, it is expensive to compute the inverse matrix
for many different sources. This is, e.g., necessary for sums over disconnected
pieces (see Fig. 6.1). In such a case one might be willing to trade lower accuracy
for a larger number of source points. Noisy pseudofermions provide a tool for
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approximating propagator elements. Exploiting (8.7) one may compute them
as expectation values of φn φ∗

k in a bosonic Gaussian distribution:

D−1
nm =

(
D† D

)−1

nk
D†

km =
∫
D[φR]D[φI ]e−φ† D†D φ φn φ∗

k∫
D[φR]D[φI ]e−φ† D†D φ

D†
km . (8.65)

As long as D has nonvanishing eigenvalues this Gaussian integral is well-
defined. It can be evaluated using a stochastic process for the φ.

Formulas of this type have also been used in early suggestions to imple-
ment dynamical fermions [35] for computing the expressions necessary for the
change of the effective fermionic action in (8.46).

8.5 The coupling-mass phase diagram

8.5.1 Continuum limit and phase transitions

In Sect. 3.5.4 we discussed the true continuum limit for pure gauge theory. We
used the renormalization group analysis result (3.88) for the lattice spacing
a as a function of the inverse coupling β to identify the limit β → ∞ as the
limit where a → 0 and the continuum physics is recovered. Here we address
the continuum limit a second time, but now reformulate it using statistical
mechanics language.

To sketch the idea, we first consider the simple familiar 2D Ising model.
Without external magnetic field, there is only a single coupling parameter.
Depending on its value one finds two phases, a disordered “hot” phase and
a phase with a nonvanishing magnetization, the “ordered” phase. A second-
order phase transition separates the two phases. The phase transition occurs
at a specific value of the coupling, the so-called critical point where the corre-
lation length ξ of the system diverges. The correlation length can be defined
through the connected correlation function of two spin variables located at the
origin and some site n. For large distances between the spins the correlation
function decays exponentially

〈sn s0〉 − 〈sn〉〈s0〉 ∝ exp
(
−|n|

ξ

)
for n → ∞ . (8.66)

The correlation length ξ is a measure for the distance over which two spins are
correlated. When the coupling is driven close to its critical value ξ becomes
large and the spins are correlated over long distances. The local structures
extending only over sites close to each other become less and less important.

Why is the notion of a diverging correlation length relevant for lattice field
theory? We have learned that the physical mass MH of some hadron can be
computed from the two-point function of a hadron interpolator OH ,

〈
OH(nt)OH(0)†

〉
∝ e−ntaMH = e−nt/ξH . (8.67)
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Here we have defined the correlation length ξH for the interpolator OH as

ξH =
1

aMH
. (8.68)

We stress that interpolators for different hadrons will in general give rise to
different correlation lengths proportional to each other. Since MH is constant
all correlation lengths ξH of physically observable states should diverge in the
continuum limit, a → 0. As in the systems of statistical mechanics we must
drive our couplings, the inverse gauge coupling β and the quark mass m,
toward critical values where the correlation length diverges. At these critical
values we can construct a continuum limit. It is therefore of utmost importance
to identify such critical points in the phase diagram.

8.5.2 The phase diagram for Wilson fermions

In QCD we expect that the correct continuum limit can be obtained at vanish-
ing gauge coupling g = 0, corresponding to β = ∞, and a vanishing fermion
mass parameter. However, also for other values of these couplings we have
transitions separating phases of different physics.

For Wilson fermions it is usual to discuss the phase diagram in terms of
the inverse gauge coupling β = 6/g2 and the hopping parameter κ introduced
in (5.55). The hopping parameter is related to the bare quark mass in the
continuum limit through κ = 1/(2am+8). In the hopping parameter notation
the Dirac operator is given by (5.57).

When discussing a phase diagram, it is always useful to first consider
simple limiting cases. For κ = 0 the hopping term is turned off and the Dirac
operator becomes a unit matrix. This limit corresponds to infinitely heavy
quarks. This is the situation of the pure gauge theory (the quenched case)
discussed already earlier. In that limit the string tension defined through the
Wilson loop may be interpreted as order parameter. As we have discussed in
Sect. 3.4.1, at β = 0 (infinite bare gauge coupling g) the theory is confining
and Monte Carlo evidence is that this confinement phase extends over the
whole range of values toward β → ∞ (g = 0). Actually, since Monte Carlo
calculations are limited, all we can really say is that for the pure gauge theory
there is no numerical evidence for a phase transition to a deconfined phase
for large enough lattices.

Another limiting case is that of free lattice fermions. This is obtained for
β = ∞ (g = 0), where all plaquettes approach unity. On an infinite lattice
this is equivalent to setting all link variables to 1. With the help of lattice
Fourier transformation one can compute the quark propagators for the free
case and find that the correlation length is given by the inverse of the quark
mass. Thus the correlation length diverges for vanishing quark mass m = 0,
which corresponds to a value of κ = 1/8.

For finite values of β one finds that the smallest observed mass in the
system (the mass of the pion) vanishes at some value κ which we denote by
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κch (β)κ = 1/4

κ = 0
β = 0

κ = 0

κ = 1/8

β = ∞

Fig. 8.1. The phase diagram for QCD with Wilson fermions. The coupling constants
are β = 6/g2 and the hopping parameter κ. The dashed curves are lines of constant
mass ratios of, e.g., Mπ/Mρ = const.

κch(β). Since we associate the pion with the Goldstone mode of spontaneous
chiral symmetry breaking, this is the point where at finite β the quark mass
vanishes. In this indirect way we get our first information on the quark mass
itself. This line of κ = κch(β) appears to continue from κch(β = ∞) = 1/8
down to κch(β = 0). There are strong coupling expansion results for meson
masses [36, 37] indicating that κch(β = 0) ≈ 1/4. The resulting phase diagram
is sketched in Fig. 8.1.

At a given β the quark masses thus assume values between infinity and
0 when κ runs from 0 to κch(β). Driving κ towards κch(β) the pion mass
decreases toward 0, but other masses of the system, like the ρ or the nucleon
mass, approach nonzero values. At some value of κ the mass ratio of, e.g.,
Mπ/Mρ will assume its experimental value. At this value of κ we then use the
dimensionless combinations aM and the experimental values M to determine
the lattice spacing a in order to set the scale.

The collection of such points for varying β then defines a “physical” curve
(dashed curves in Fig. 8.1). Along such a curve the lattice spacing decreases
toward zero for increasing β and the system approaches the continuum limit.

We emphasize that the dynamics of the sea quarks of course also influences
the lattice spacing a, which thus is a function of both coupling parameters
a = a (β, κ). Curves of constant lattice spacing thus will not simply be lines
of constant β. Also we point out that the lattice spacing is nonzero along the
chiral curve κ = κch(β < ∞).4 Approaching the continuum limit along the
chiral curve is another alternative suitable for mass-independent renormaliza-
tion schemes. In this situation the lattice spacing a for given gauge coupling
is defined in the chiral limit, i.e., on the chiral curve.

4The situation is similar to that of spontaneous symmetry breaking in the
N -component φ4-theory. There the two couplings are the nearest neighbor-coupling
g (playing the role of our gauge coupling) and an external magnetic field h (related
to the fermion mass in QCD). In the broken phase, for g > gcrit and h = 0 the
order parameter 〈φ〉 is nonzero and there are Goldstone modes as well as massive
modes. The lattice spacing is zero only toward the critical point g → gcrit. When
the external field is switched on the Goldstone modes become massive, similar to
the pions.
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We have to add an important remark to the above discussion. As will be
detailed in Chap. 12, by studying lattices with finite time extent (in physical
units) one may simulate QCD at finite temperature. This introduces another
parameter, the temperature, giving rise to a more complicated phase diagram.
One finds a phase transition to a deconfined phase at some critical temper-
ature, i.e., if the time (or space) extent becomes sufficiently small. Here we
only stress that the above discussion of the phase structure is based on the
assumption that the time extent of our lattice is large enough such that we
always remain in the confined phase.

8.5.3 Ginsparg–Wilson fermions

The range of the bare mass parameter am for a Ginsparg–Wilson Dirac op-
erator in the form of (7.41) is limited to [0, 2]. The value am= 0 defines the
point of massless fermions and (spontaneously broken) chiral symmetry. At
the maximum value am = 2 the fermions decouple from the system; this
corresponds to the limit of infinitely heavy quarks.

Since the curve of chiral symmetry is just a line at m = 0 and does not
depend on the gauge coupling (unlike the discussed case of the Wilson ac-
tion), the phase diagram looks simpler than that of Fig. 8.1. The variable am
replaces κ and ranges from am= 2 for the pure gauge theory (quenched limit)
to m = 0 for the chiral limit. Again one can find curves of constant mass ratios
approaching the continuum limit at β → ∞, m = 0.

Let us address another aspect of using a Dirac operator which for vanishing
quark mass obeys the Ginsparg–Wilson equation. For such a Dirac operator
the eigenvalue spectrum is restricted to a circle in the complex plane. The
smallest distance of this circle to the origin is given by the bare quark mass
and the smallest possible eigenvalue is given by this mass. For nonvanishing
mass the inverse Dirac operator, i.e., the quark propagator can always be
computed, and (in principle) the chiral line can be approached.

For non-chiral Dirac operators, e.g., the Wilson Dirac operator, one has no
such restriction of the eigenvalues and they fluctuate depending on the gauge
field. Thus even for nonvanishing quark mass zero eigenvalues of the Dirac
operator may show up for exceptional configurations (compare Sect. 6.2.5).
Consequently the quark propagator cannot be computed for such configu-
rations. Thus the fluctuations of the Dirac eigenvalues often forbid a close
approach to the chiral line κch(β). The situation improves by using larger
values of β, larger lattices, or more advanced Dirac operators with smaller
fluctuations of their eigenvalues.
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8.6 Full QCD calculations

In full QCD calculations the large mass quarks c, b, and t contribute negligibly
to the dynamics of the quark sea. It is therefore an excellent approximation
to consider only two mass-degenerate light quarks u, d and one heavier quark
s for the sea. Even that poses an algorithmic problem. For the non-exact R-
type algorithms discussed in Sect. 8.3.1 the number of quark species of a kind
may be easily fixed by a pre-factor; however the flavor mixing and the contin-
uum limit are disputable. For the exact HMC-algorithm in its original form,
on the other hand, positivity requires an even number of mass-degenerate
fermions. There are, however, variants where odd numbers of fermions may
be implemented with the help of polynomial approximations as mentioned in
Sect. 8.3.

There are several international collaborations studying dynamical fermions
for various types of Dirac operators. If we tried to mention them explictly this
would imply omitting some of them even at the time of publication of this text.
We therefore just remark that for the simple improved Wilson action spatial
lattice sizes up to 50–100 are presently achieved for two light flavors and
some even including the strange quark. Similar lattice sizes are being studied
for twisted mass and staggered fermions (see Chap. 10). For the numerically
more demanding domain wall formulation (Chap. 10) one typically works on
lattices half that size (in lattice units). This roughly reflects the increased
numerical cost, i.e., one to two orders of magnitude. First results for overlap
fermions on smaller lattices, again a factor of two smaller than the domain
wall sizes, are being produced, although with certain restrictions like fixed
topological sectors due to algorithmic problems for the tunneling between

Fig. 8.2. Spectroscopy results from a fully dynamical simulation by the Budapest–
Marseille–Wuppertal collaboration [38]. (From S. Dürr et al.: Science 322, 1224
(2008). Reprinted with permission from AAAS)
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different sectors. In most of these collaborations a wide spectrum of physics
questions is attacked by the participating scientists.

To give one example of a calculation with dynamical fermions we show
in Fig. 8.2 the result of a spectroscopy calculation with two light dynami-
cal fermions and a dynamical strange quark from the Budapest–Marseille–
Wuppertal collaboration [38]. The simulation was done with the improved
(compare Chap. 9) Wilson gauge- and Wilson fermion action on lattices with
a spatial extent up to 4 fm. The gauge fields entering the Dirac operator
were treated with six levels of stout smearing. Pion masses down to 190 MeV
were reached and finite volume effects, as well as effects of resonances, were
taken into account in the analysis. In Fig. 8.2 the masses for different mesons
and baryons are shown, extrapolated to physical quark masses and vanishing
lattice spacing.

Comparing these results with the quenched spectroscopy calculation of
Fig. 6.5 one finds that the discrepancies between the lattice results and the ex-
perimental numbers have vanished. Figure 8.2 demonstrates that when taking
into account the effects of light dynamical quarks, for a wide range of different
quantum numbers a controlled ab initio lattice spectroscopy calculation leads
to excellent agreement between numerical results and the experimental data.
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9

Symanzik improvement and RG actions

When introducing the QCD action on the lattice we had to discretize the
derivative terms that show up in the continuum action. It was pointed out
then that any discretization, e.g., symmetric differences for the first deriva-
tive in the fermion action, gives rise to discretization effects. Typically the
discretization effects are of O(a) for fermions and of O(a2) for the gauge
fields. These disappear only in the continuum limit when the lattice spacing a
is sent to zero. Performing the continuum limit is, however, a nontrivial task.
As one decreases a, the number of lattice points has to increase, such that the
physical volume remains constant (ideally one would first send the number
of lattice points to infinity before sending a to zero). Thus in a numerical
simulation one always works with finite a and the discretization errors have
to be dealt with, e.g., by including them in the extrapolation to vanishing a.

An elegant way of approaching the problem is a systematical reduction
of the discretization errors. We have already mentioned that the discretiza-
tion we have chosen is not unique. Also other discretizations give rise to the
same formal continuum limit. In particular one may combine different terms
to obtain a lattice action with reduced discretization effects. Adding, e.g.,
an extra term to the Wilson fermion action and matching its coefficient ap-
propriately, one can reduce the discretization error from O(a) to O(a2). In
a similar way it is possible (and necessary for a full improvement) to reduce
also the discretization errors of the observables used. A systematic implemen-
tation of these ideas is the Symanzik improvement program which we discuss
in Sect. 9.1.

A conceptionally different approach uses actions constructed from renor-
malization group (RG) transformations. Improvement is achieved by integrat-
ing out (blocking) short distance degrees of freedom and including their effect
in the action for the blocked fields. This strategy is presented in Sects. 9.2–
9.4. After discussing the blocking approach for free fermions where the lattice
action can be computed in closed form (Sect. 9.2), we introduce the general
setting for full QCD in Sect. 9.3. In Sect. 9.4 we finally address an impor-
tant use of the RG approach, the identification of the lattice counterpart of

Gattringer, C., Lang, C.B.: Symanzik Improvement and RG Actions. Lect. Notes
Phys. 788, 213–242 (2010)
DOI 10.1007/978-3-642-01850-3 9 c© Springer-Verlag Berlin Heidelberg 2010
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continuum symmetries, and as an application we derive the Ginsparg–Wilson
equation.

9.1 The Symanzik improvement program

9.1.1 A toy example

Let us begin our discussion of improvement with a toy example which already
contains most of the steps that will be taken when improving lattice QCD.
We consider the (symmetric) discretization of the derivative f ′(x) for some
function f(x) of a single real variable x:

f(x+a) − f(x−a)
2a

= f ′(x) + a2C(2)(x) + a4C(4)(x) + O(a6) . (9.1)

Note that due to the (anti-)symmetrical discretization on the left-hand side,
only even powers of a and odd derivatives of f can appear on the right-hand
side. We have introduced the abbreviations C(2) and C(4) for the correction
terms. Since a has dimension of length, in order to have the same dimensions
on both sides the correction terms C(k) must have dimension 1+k, i.e., C(k) ∼
length −(1+k) (assuming that f is dimensionless).

Using the Taylor series expansion

f(x ± a) = f(x) ± af ′(x) +
a2

2
f ′′(x) ± a3

6
f ′′′(x) + O(a4) , (9.2)

we can identify the leading correction term as

C(2)(x) =
1
6
f ′′′(x) . (9.3)

We stress at this point that this expression for the correction term is given in
continuum language, i.e., as a higher derivative of f .

The strategy for improvement is to add to the left-hand side of (9.1) a
discretized expression (i.e., an expression built from f(x), f(x ± a), f(x ±
2a), . . .) such that the correction terms on the right-hand side are canceled
up to the requested order. For improvement of O(a2) we thus use the ansatz

f(x+a) − f(x−a)
2a

+ c a2D(3)[f ](x) = f ′(x) + O(a4) , (9.4)

where D(3)[f ] is a discretized expression obeying D(3)[f ] ≈ f ′′′ +O(a2) and c
is some constant.

Employing again the power series (9.2), it is easy to see that

D(3)[f ](x) =
f(x+2a) − 2f(x+a) + 2f(x−a) − f(x−2a)

2a3
, c = −1

6
(9.5)
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does the job and O(a2) improvement is achieved. We remark, however, that
the choice (9.5) is not unique, and, e.g., also terms including f(x± 3a) could
have been used.

Let us summarize the steps taken in our toy example, which already outline
the approach for improving lattice QCD:

• We start from a simple discretized expression for the quantity of interest
(the first derivative f ′ in our example).

• Correction terms are identified using continuum language (higher deriva-
tives in the toy example).

• The correction terms have certain symmetries (only odd derivatives in the
example) and are ordered according to their dimension.

• In order to achieve improvement, discretized versions of the correction
terms are added with suitable coefficients, such that corrections up to the
desired order vanish.

• There is some arbitrariness in the choice of the discretized correction terms.

Exactly the same steps and features will appear in the improvement of lattice
QCD. The main difference is the determination of the coefficients. In the toy
example the coefficient c followed from simple algebraic considerations. Due
to the nonlinear nature of QCD and the necessary renormalization, the de-
termination of the corresponding coefficients in QCD is much more involved
and must be done perturbatively or through a nonperturbative matching pro-
cedure. The approach to improvement outlined here is known as Symanzik
improvement program [1–4].

9.1.2 The framework for improving lattice QCD

When improving lattice QCD, we need to improve Euclidean correlation func-
tions, e.g., two point functions of interpolators O1 and O2 located at two
different space–time points n,m ∈ Λ,

〈O1(n)O2(m)〉 =
1
Z

∫
D[U ]D

[
ψ,ψ

]
e−S[U,ψ,ψ ] O1[U,ψ, ψ;n]O2[U,ψ, ψ;m] ,

(9.6)
which may be used to compute the energy spectrum and some matrix ele-
ments. To obtain improvement for all these observables in general we will
have to improve both the lattice action S and the interpolators O1, O2.

Let us begin the discussion with the improvement of the action. To be
specific, we start on the lattice with Wilson’s gauge action (2.49) and a fermion
action with Wilson’s Dirac operator (5.51). From the discussion of the previous
chapters we expect discretization errors of O(a) for the fermion part and O(a2)
for the gauge part of the action.

Following the strategy illustrated in the toy example, we begin with identi-
fying a continuum expression for the correction terms. These should be ordered
according to their dimension and have the symmetries of the QCD action. In
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other words we write down an effective action which describes the behavior
of Wilson’s form of lattice QCD at finite a and its approach to the continuum
limit. Following [1, 2, 5–7] we write the effective action in the form

Seff =
∫

d4x
(
L(0)(x) + aL(1)(x) + a2L(2)(x) + . . .

)
. (9.7)

Here L(0) is the usual QCD Lagrangian as defined in (2.3) and (2.17). The
terms L(k), k ≥ 1 are the additional correction terms, which are built from
products of quark and gluon fields such that they have dimensions 4 + k,
i.e., L(k) ∼ length −(4+k). Thus, compared to L(0), which is of dimension 4,
these terms will contain additional derivatives or powers of the quark mass
m. Requiring the symmetries of the lattice action (compare Sect. 5.4), one
may show that the leading correction term L(1)(x) can be written as a linear
combination of the following dimension-5 operators (σµν ≡ [γµ, γν ]/2i):

L(1)
1 (x) = ψ(x)σµνFµν(x)ψ(x) ,

L(1)
2 (x) = ψ(x)

−→
Dµ(x)

−→
Dµ(x)ψ(x) + ψ(x)

←−
Dµ(x)

←−
Dµ(x)ψ(x) ,

L(1)
3 (x) = m tr [Fµν(x)Fµν(x)] ,

L(1)
4 (x) = m

(
ψ(x)γµ

−→
Dµ(x)ψ(x) − ψ(x)γµ

←−
Dµ(x)ψ(x)

)
,

L(1)
5 (x) = m2 ψ(x)ψ(x) . (9.8)

This list of operators may be further reduced by using the field equation
(γµDµ + m)ψ = 0, which gives rise to the two relations

L(1)
1 − L(1)

2 + 2L(1)
5 = 0 , L(1)

4 + 2L(1)
5 = 0 . (9.9)

These relations may be used to eliminate the terms L(1)
2 and L(1)

4 from the
set of operators that span the leading correction, and it can be shown [6, 7]
that this is true beyond tree level (where the field equations hold). Thus it
is sufficient to work with only the terms L(1)

1 , L(1)
3 , and L(1)

5 . Two of these,
L(1)

3 and L(1)
5 , are terms that up to some factor are already present in the

original action, such that they can be accounted for by a redefinition of the
bare parameters m and g (or β = 6/g2).

Thus for O(a) improvement of the Wilson lattice action it is sufficient to
add the Pauli term L(1)

1 such that we obtain for the improved action

SI = SWilson + csw a5
∑

n∈Λ

∑

µ<ν

ψ(n)
1
2
σµνF̂µν(n)ψ(n) . (9.10)

The real coefficient csw is often referred to as Sheikholeslami–Wohlert coeffi-
cient due to the authors of [5], where the improved action (9.10) was written
down for the first time. As outlined in the toy example, F̂µν has to be a dis-
cretized version of the corresponding term in L(1)

1 , i.e., a lattice form of the
field strength tensor. A convenient but not unique choice is
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ν

µ

n

Fig. 9.1. Graphical representation of the sum Qµν(n) of plaquettes in the µ–ν plane
used for the discretization of the field strength in (9.11)

F̂µν(n) =
−i
8a2

(Qµν(n) − Qνµ(n)) , (9.11)

where Qµν(n) is the sum of plaquettes Uµ,ν(n) (compare (2.48)) in the µ–ν
plane as shown in Fig. 9.1,

Qµν(n) ≡ Uµ,ν(n) + Uν,−µ(n) + U−µ,−ν(n) + U−ν,µ(n) , (9.12)

which is a discretization of the continuum field strength tensor. Due to the
shape of the terms which is reminiscent of a clover leaf, the last term in (9.10)
is often referred to as clover term or clover improvement.

At this point we need to add a couple of comments: We saw that for O(a)
improvement it is sufficient to add a single term to the fermion action. The
only pure glue term L(1)

3 was found to be proportional to the original gauge
action and thus was absorbed in a redefinition of the bare gauge coupling.
Relevant purely gluonic operators appear only at dimension 6, i.e., they con-
tribute at O(a2). This is in agreement with previous remarks that for bosonic
fields the discretization errors are only of O(a2). For the improvement of the
gauge action we refer the reader to the original literature, e.g., [3, 8], where
the so-called Lüscher–Weisz gauge action is presented.

The second comment concerns the discretization errors of chirally sym-
metric Dirac operators that obey the Ginsparg–Wilson equation (7.29). If one
would add the order O(a)-improving term, i.e., the clover term, the resulting
Dirac operator would no longer obey the Ginsparg–Wilson equation. Thus
we must conclude that a Ginsparg–Wilson Dirac operator is already O(a)
improved. As a matter of fact the nonlinear right-hand side of the Ginsparg–
Wilson equation (7.29) generates a lattice discretization of the Pauli term L(1)

1

when the naive lattice Dirac operator (which necessarily is a building block of
any lattice Dirac operator) is squared. This link between O(a) improvement
and chiral symmetry hints already at a nonperturbative strategy [6] for deter-
mining the Sheikholeslami–Wohlert coefficient, which we will present below,
following the discussion of the improvement of currents.
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9.1.3 Improvement of interpolators

The improvement of the action, which we have discussed in the last section, is
already sufficient for O(a) improvement of on-shell quantities such as hadron
masses. However, for a full O(a) improvement of correlator (9.6), which is
necessary for the improvement of the hadronic matrix elements computed
from it, also the interpolators Oi need to be improved.

As for the action the strategy is to find continuum expressions for the
correction terms which are organized with respect to their dimension and are
identified by requiring the symmetries of the operator Oi one wants to im-
prove. Since currents with arbitrary quantum numbers may be constructed,
it is not possible to give an exhaustive list of terms needed for general O(a)
improvement of n-point functions. Following [6, 7] we instead discuss two
examples, the improvement of the isovector axial current Aa

µ and the pseu-
doscalar density P a:

Aa
µ(n) =

1
2
ψ(n)γµγ5τ

aψ(n) ,

P a(n) =
1
2
ψ(n)γ5τ

aψ(n) . (9.13)

Here τa denotes one of the Pauli matrices τ1, τ2, τ3 acting in Nf = 2-flavor
space. The dimension-4 operators needed for O(a) improvement of the current
Aa

µ are given by

(A1)a
µ(x) =

1
2

ψ(x)γ5σµν

(−→
Dν(x) − ←−

Dν(x)
)

τaψ(x) ,

(A2)a
µ(x) =

1
2

∂µ

(
ψ(x)γ5τ

aψ(x)
)

,

(A3)a
µ(x) =

m

2
ψ(x)γµγ5τ

aψ(x) . (9.14)

As for the improvement of the action we can apply the field equation, which
can be used to show that A1 can be written as a linear combination of A2

and A3. Furthermore A3 has the form of the original current of (9.13) such
that it can be absorbed in the overall multiplicative renormalization constant
ZA for the axial vector current (compare Chap. 11). Thus we obtain for the
O(a)-improved axial current AI the expression

(AI)a
µ(n) = Aa

µ(n) + cA a ∂̂µP a(n) , (9.15)

where the real coefficient cA still has to be determined. By ∂̂µ we denote the
symmetric difference operator ∂̂µf(n) = (f(n + µ̂) − f(n − µ̂)) /2a.

For the pseudoscalar density P a the only term that occurs is a normaliza-
tion with an extra factor of the mass, which is again absorbed in the renormal-
ization. Thus for O(a) improvement it is sufficient to work with (PI)a = P a.
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9.1.4 Determination of improvement coefficients

For the O(a) improvement of n-point functions of the axial currents we still
need to determine the coefficients csw and cA. As already remarked, here
QCD deviates from our toy example due to its nonlinearity and the necessary
renormalization.

Using a traditional approach, one can compute the coefficients perturba-
tively [5, 10, 11]:

csw = 1 + 0.2659 g2 + O(g4) , cA = − 0.00756 g2 + O(g4) . (9.16)

However, for many important applications of lattice QCD one works in a
regime where the coupling g is not small and the perturbative result is not
particularly useful. For an introductory discussion of another approach, tad-
pole improvement [12], see [13].

We have already remarked that for the nonperturbative determination of
csw and cA one can explore the chiral symmetry of QCD [6]. In Chap. 11 we
will show that nontrivial relations between vacuum expectation values may
be derived, the so-called Ward identities. Here we simply state their existence
without proof. The particular Ward identity which we make use of here reads
in the continuum

〈(
∂µAa

µ(x)
)

O
〉

= 2m 〈P a(x)O〉 . (9.17)

In this equation Aa
µ and P a are the continuum counterparts of the corre-

sponding lattice interpolators defined in (9.13). O is an interpolator chosen
such that 〈P a(x)O 〉 does not vanish, with the restriction that its support
does not include the point x where Aa

µ(x) and P a(x) are located. Equation
(9.17) expresses the fact that the isovector axial current is conserved for a
chiral theory where m = 0. Thus it is referred to as the partially conserved
axial current relation (PCAC).

On the lattice we expect that after renormalization (see Chap. 11), the
lattice interpolators approach the continuum relation (9.17), such that

〈(
∂̂µA(r) a

µ (n)
)

O
〉

= 2m(r)
〈
P (r) a(n)O

〉
+ O(az) . (9.18)

The superscript (r) in this equation expresses the fact that renormalized quan-
tities are being used. The important observation is that the correction O(az)
is different for the improved theory with properly chosen csw and cA, where
one expects z = 2, while for the unimproved theory one expects O(a) cor-
rections, i.e., z = 1. Thus we may use the corrections in the PCAC relation
(9.18) to determine csw and cA.

A slight complication arises through the necessary renormalization. Using
the improved axial current (AI)a

µ (for the pseudoscalar we work with the
original definition, (PI)a = P a), we write the renormalized interpolators as

A(r) a
µ (n) = ZA (1 + bAam)

(
Aa

µ(n) + cA a ∂̂µP a(n)
)

,

P (r) a(n) = ZP (1 + bP am)P a(n) . (9.19)
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Here ZA and ZP are the renormalization constants for the axial vector and
the pseudoscalar, respectively (see Chap. 11). The real coefficients bA and bP

parameterize their lattice corrections including correction terms such as (A3)a
µ,

which, as we have already remarked, were absorbed in the renormalization.
Based on (9.18) we define an unrenormalized quark mass mAWI, referred

to as PCAC mass or AWI (axial Ward identity) mass through the ratio

mAWI(n) =

〈(
∂̂µAa

µ(n) + cA a +̂P a(n)
)

Oa
〉

2 〈P a(n)Oa〉 . (9.20)

In this equation Oa is an interpolator which we will define below and +̂
denotes the Laplacian operator on the lattice, +̂f(n) =

∑
µ (f(n + µ̂)−

2f(n) + f(n − µ̂)) /a2. From the lattice PCAC relation (9.18) we obtain

mAWI =
ZP (1 + bP am)
ZA (1 + bAam)

m(r) + O(az) , (9.21)

where z = 2 is obtained when csw and cA have the correct nonperturba-
tive values. For the determination of these values one evaluates mAWI three
times using three different Oa in (9.20). This is done at fixed bare param-
eters such that one of the three values can be used to remove the ratio
(ZP (1+bP am)) (ZA(1+bAam))−1 and the other two determine csw and cA.

The remaining problem is the choice of the operators Oa that one inserts
into (9.20). The operators Oa must have the quantum numbers of P a and
should be chosen such that they probe the PCAC relation (and thus the cutoff
effect), but leave the renormalization factors in (9.21) unchanged. An operator
with that properties [6] may be constructed using the so-called Schrödinger
functional.

For the Schrödinger functional [14–18] one uses instead of periodic (or anti-
periodic) boundary conditions in time direction, Dirichlet, i.e., fixed boundary
conditions. For the spatial directions periodic boundary conditions are kept.
Using a lattice with NT +1 lattice points in time direction, we need to specify
the boundary values for the fields at n4 = 0 and n4 = NT :

P+ψ(n, 0) = ρ(n) , ψ(n, 0)P− = ρ(n) ,

P−ψ(n, NT ) = ρ′(n) , ψ(n, NT )P+ = ρ′(n) , (9.22)

where P± are the projectors P± = (1± γ4)/2. For the gauge fields we need to
specify the values of the spatial gauge links at n4 = 0 and n4 = NT :

Uj(n, 0) = diag
(
eiφ1/N , eiφ2/N , eiφ3/N

)
,

Uj(n, NT ) = diag
(
eiφ′

1/N , eiφ′
2/N , eiφ′

3/N
)

. (9.23)

Here N denotes the number of lattice points in spatial direction and the phases
φi, φ′

i are subject to the conditions φ1 + φ2 + φ3 = 0 and φ′
1 + φ′

2 + φ′
3 = 0.
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The dynamical variables, which are integrated over in the path integral
constituting the Schrödinger functional in (9.25) below, are just the fermion
and gauge degrees of freedom in the interior of our lattice. The boundary
values, on the other hand, may be used as source terms. Making use of this
feature we write down the interpolator Oa which we insert in (9.21) as

Oa = −a6

2

∑

n,m

∂

∂ρ(n)
γ5τ

a ∂

∂ρ(m)
. (9.24)

The vacuum expectation value of, e.g., the correlator of Aa
µ and Oa in the

Schrödinger functional is then defined as

〈
Aa

µ(n)Oa
〉

=
1
Z

∫
D[ψ,ψ, U ]Aa

µ(n)Oa e−S[ψ,ψ,U ]

∣∣∣∣
ρ=ρ′=ρ=ρ′=0

, (9.25)

i.e., the boundary values for the fermions are set to 0 after the derivatives
with respect to ρ, ρ′, ρ, and ρ′ in the definition of Oa have been performed.
The boundary values for the gauge fields are kept at nontrivial values and
now may be used to probe the system.

The operator Oa corresponds to a quark source and sinks with zero spatial
momentum placed at the timeslice n4 = 0. Thus the vacuum expectation value
(9.25) may be interpreted as a quark and an antiquark lines traveling into the
interior of our lattice where they annihilate at the point n, i.e., the point
where we placed the current Aa

µ(n).
For our application the key property of the Schrödinger functional is that

in (9.21) the renormalization constants and the renormalized mass do not
depend on the boundary conditions φi and φ′

i. Thus these can be used to
probe the exponent z which parameterizes the discretization error. If csw and
cA are chosen correctly the exponent is z = 2, and the results for the PCAC
mass mAWI as defined in (9.20) should be (essentially) independent of φi, φ′

i,
and the coordinate n4 where the current Aa

µ is inserted. For technical details
of the strategy for determining csw and cA from this condition we refer to the
original literature [19–21].

The numerical result for the coefficient csw for two flavors of dynamical
Wilson fermions may be parameterized as [21]

csw =
1 − 0.454g2 − 0.175g4 + 0.012g6 + 0.045g8

1 − 0.720g2
, (9.26)

which is a reliable approximation for the range of couplings g ∈ [0.0, 1.1].

9.2 Lattice actions for free fermions from RG
transformations

In the last section we have achieved improvement by analyzing how different
terms that may appear in a lattice discretization of the action depend on the
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lattice spacing a. We have seen that a linear combination of such terms with
suitably chosen coefficients reduces the discretization errors. In the next three
sections we now discuss a different approach, the so-called renormalization
group (RG) transformations, in which the degrees of freedom above the lattice
cutoff are integrated out and the effect of these UV modes is incorporated in
suitable terms of the lattice action.

In this section we directly block free fermions from the continuum (see
[22]). This warming-up exercise demonstrates some of the central concepts of
RG transformations for an example that can be solved in closed form. The
example is also of interest for the problem of chiral fermions on the lattice. We
will see that the lattice action we obtain from the blocking procedure obeys
the Ginsparg–Wilson equation, which we have already identified in Chap. 7 as
the key to chiral symmetry on the lattice.

9.2.1 Integrating out the fields over hypercubes

The starting point is the continuum action for free massless fermions:

SF

[
φ, φ

]
=

∫
d4x φ(x) γµ∂µ φ(x) =

∫
d4p φ̂(−p) iγµpµ φ̂(p) . (9.27)

For later use we have in the second step already transformed the action to
momentum space using the symmetric convention

f̂(p) =
∫ ∞

−∞

d4x

(2π)2
f(x) e−ip·x , f(x) =

∫ ∞

−∞

d4p

(2π)2
f̂(p) eip·x (9.28)

for the Fourier transformation in the continuum. We stress at this point that
the Fourier transform in the continuum is denoted by f̂ , while for the Fourier
transform on the lattice f̃ is used, as defined in Appendix A.3.

The continuum fields φ(x), φ(x) carry only Dirac indices, since no gauge
field is coupled. In order to obtain blocked lattice fields φB

n , φB
n from the

continuum fields φ(x), φ(x), we embed an infinite Euclidean lattice Z4 into
our Euclidean space–time R4. The lattice constant a is set to a = 1 for now,
but will be displayed explicitly later when needed. We construct the blocked
fields by integrating the continuum fields over hypercubes with sides of length
1, centered at the sites n of our lattice, i.e., n ∈ Z4:

φB
n =

(
4∏

µ=1

∫ nµ+ 1
2

nµ− 1
2

dxµ

)
φ(x) =

∫ ∞

−∞

d4p

(2π)2
φ̂(p)π(p) eip·n . (9.29)

In this equation we have expressed the continuum field φ(x) through its
Fourier transform φ̂(p) as defined in (9.28) and abbreviated the remaining
space–time integral as

π(p) =

(
4∏

µ=1

∫ 1
2

− 1
2

dxµ

)
eip·x =

4∏

µ=1

2 sin(pµ/2)
pµ

. (9.30)
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The function π(p) describes the blocking procedure in momentum space. The
blocking of the conjugate field φ proceeds in exactly the same way. Since the
blocking procedure is trivial in Dirac space, the blocked fields simply inherit
the Dirac indices of their continuum counterparts.

Equation (9.29) expresses the blocked field φB
n as a Fourier integral with

the Fourier transform φ̂(p) of the continuum. For later use we rewrite (9.29)
to obtain an alternative expression where the lattice Fourier transform φ̃B(p)
of the blocked field is used:

φB
n =

∫ π

−π

d4p

(2π)2
φ̃B(p) eip·n , φ̃B(p) =

∑

k∈Z4

φ̂(p+2πk)π(p+2πk) . (9.31)

Note that now the momentum integral runs only over the Brillouin zone, i.e.,
pµ ∈ (−π, π], which is the momentum space of an infinite lattice, as can be
seen from the formulas in Appendix A.3, when one sends the number of lattice
points to infinity.

9.2.2 The blocked lattice Dirac operator

After defining the blocked fields φB
n , φB

n and evaluating their expression as
Fourier integrals, we can now formally define the lattice theory obtained from
the blocking procedure:

exp

(
−
∑

n,m

ψnDnmψm

)
=
∫
D

[
φ, φ

]
exp

(
−
∑

n

(
ψn−φB

n

) (
ψn−φB

n

)
− SF

[
φ, φ

]
)

.

(9.32)
In this equation ψm, ψn denote the fields of the target lattice theory, i.e., the
fermions living on the infinite lattice Z4. Consequently the indices n and m
run over all of Z4. The Dirac operator on the lattice is denoted by Dnm. The
left-hand side thus is the Boltzmann factor exp(−Slatt) of the lattice theory.
Both the lattice fields ψm, ψn and the lattice Dirac operator Dnm carry spinor
indices which we suppress, i.e., we use vector/matrix notation in Dirac space.

The right-hand side of (9.32) defines how the lattice theory, or more pre-
cisely the lattice Dirac operator Dnm, is obtained from its continuum coun-
terpart: The continuum fields φ, φ are integrated over in a path integral (we
will comment on the continuum measure D

[
φ, φ

]
later). In the Boltzmann

factor we have the continuum action SF

[
φ, φ

]
from (9.27) as usual and an

additional quadratic piece which couples the blocked continuum fields φB , φB

to the fields ψ,ψ of the target theory on the lattice.
Since the path integral on the right-hand side is Gaussian it can be solved

in closed form: It is convenient [22] to rewrite the blocking term with an
additional Gaussian integral over auxiliary Grassmann variables η, η:
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exp

(
−

∑

n

(
ψn − φB

n

) (
ψn − φB

n

)
)

= (9.33)

∫
D[η, η] exp

(
∑

n

(
ηnηn +

(
ψn−φB

n

)
ηn + ηn

(
ψn−φB

n

))
)

.

The auxiliary fields live on the lattice, carry a Dirac index, and the measure
D[η, η] is the product over the measures at all lattice points. The terms in
(9.33) that mix the auxiliary fields and the blocked fields φB are written as

∑

n

ηnφB
n =

∫ ∞

−∞

d4p

(2π)2
Ĵ(−p) φ̂(p) , Ĵ(p) =

∑

n

ηn π(−p) e−ip·n ,

∑

n

φB
n ηn =

∫ ∞

−∞

d4p

(2π)2
φ̂(−p) Ĵ(p) , Ĵ(p) =

∑

n

ηn π(−p) e−ip·n , (9.34)

where we have used (9.29) to express the blocked fields through their contin-
uum Fourier transforms.

Inserting (9.33) and (9.34) into the master formula (9.32), we obtain

exp

(
−

∑

n,m

ψnDnmψm

)
=

∫
D[η, η] exp

(
∑

n

(
ηnηn + ψnηn + ηnψn

)
)

I
[
J, J

]
,

(9.35)
where we denote the remaining path integral over the continuum fields as
I

[
J, J

]
given by

∫
D

[
φ, φ

]
exp

(
−
∫ ∞

−∞

d4p

(2π)2

(
(2π)2φ̂(−p) iγµpµ φ̂(p) + φ̂(−p) Ĵ(p) + Ĵ(−p) φ̂(p)

))

= C exp

(∫ ∞

−∞

d4p

(2π)4
Ĵ(−p)

−iγµpµ

p2 Ĵ(p)

)
. (9.36)

In the second step we have solved the path integral, as discussed in Chap. 5, by
completing the square in the exponent and a shift of the integration variables
in the path integral, φ̂′(p) = φ̂(p) + iγµpµ(2π)−2p−2Ĵ(p), and similarly for
φ̂. The remaining term, which after the shift of the integration variables is
independent of J and J , is denoted by the constant C. We stress at this point
that we did not explicitly define the continuum measure D

[
φ, φ

]
and only

assumed, that it remains invariant under a shift of variables. As a matter
of fact, for a proper definition of this measure, a regulator such as a finite
lattice is necessary. If one removes this regulator the constant C diverges
which, however, is irrelevant for the evaluation of vacuum expectation values
of operators, where such a constant cancels in the normalization of expectation
values with the partition function Z. Thus we can ignore the constant C and
the path integral (9.36) is given by the term quadratic in J which comes from
the completion of the square.
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The final step is to insert result (9.36) into the remaining integral (9.35)
over η and η:

exp

(
−

∑

n,m

ψnDnmψm

)

= C

∫
D[η, η] exp

(
∑

n,m

ηn (1 + R)nm ηm +
∑

n

(
ψnηn + ηnψn

)
)

= CC ′ exp

(
−

∑

n,m

ψn (1 + R)−1
nm ψm

)
. (9.37)

In the last step we have again solved the Gaussian path integral by completing
the square in the exponent and the remaining term, which is independent of
ψ and ψ, gives rise to another irrelevant constant C ′. The matrix Rnm was
obtained by inserting the expressions for Ĵ(p) and Ĵ(p) from (9.34) into the
exponent on the right-hand side of (9.36). Explicitly the matrix R reads

Rnm =
∫ ∞

−∞

d4p

(2π)2
π(p) eip·n −iγµpµ

p2
e−ip·m π(−p) , (9.38)

and by comparing the first and the last term in (9.37) we obtain the final
result for the lattice Dirac operator (after dropping the constants C and C ′)

Dnm = (1 + R)−1
nm . (9.39)

The lattice Dirac operator D is most conveniently expressed by switching to
its Fourier transform:

D̃(p|q) =
1

(2π)4
∑

n,m

e−ip·nDnmeiq·m . (9.40)

For the necessary Fourier transform of R one finds

R̃(p|q) = δ(p − q)
∑

k∈Z4

π (q + 2πk)2

(q + 2πk)2
(−i)γµ(q + 2πk)µ = −i δ(p − q)γµvµ(q) ,

with vµ(q) =
∑

k∈Z4

π (q + 2πk)2

(q + 2πk)2
(q + 2πk)µ . (9.41)

Inserting this into (9.39) one obtains [22]

D̃(p|q) = δ(p − q) D̃(q) , D̃(q) = (a1− i γµvµ(q))−1 =
a1 + i γµvµ(q)

a2 + v(q)2
.

(9.42)
Here we have split off the Dirac-δ that ensures momentum conservation which
is a consequence of translation invariance. We have also re-inserted the lattice
spacing a necessary for the analysis below.
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9.2.3 Properties of the blocked action

The lattice propagator in momentum space, D̃(q), is the result of our blocking
procedure for obtaining the effective lattice theory. It has a series of remarkable
properties which we discuss now.

First we convince ourselves that D̃(q) has the correct naive continuum
limit and that it is free of doublers. In other words we need to show that

D̃(q) =
{

iγµqµ + O(a) when all qµ ≈ 0 ,

O(1/a) when at least one qµ ≈ π/a .
(9.43)

When inspecting the final result (9.42) for the lattice Dirac operator, it is ob-
vious that the properties (9.43) must come from the behavior of the functions
vµ(q) given in (9.41). As a matter of fact one can show (e.g., most quickly by
analyzing the vµ(q) numerically) that they behave as

vµ(q) ≈
{

qµ/q2 when all qµ ≈ 0 ,

0 when at least one qµ ≈ π/a .
(9.44)

This behavior exactly implies the required properties of a lattice Dirac oper-
ator as stated in (9.43).

Having established that the blocked Dirac operator D̃ gives rise to a proper
lattice theory let us now investigate its properties further. When transforming
back to real space it is found that the blocked Dirac operator is not ultralocal,
in agreement with the general discussion in Sect. 7.4.2. It may, however, be
demonstrated [22] that the blocked Dirac operator falls off exponentially as is
necessary for a local quantum field theory.

Another important aspect is discretization errors. We have seen in (9.43)
that in the limit of vanishing momentum q we obtain the correct behavior
iγµqµ. What, however, are the deviations from that ideal behavior as one in-
creases the momentum? A physically interesting way of assessing this question
is to analyze the dispersion relation of a free fermion described by D̃. This
may be done by computing the poles of D̃(q)−1 in the complex q4 plane for
different values of the spatial momentum q. Plotting the energy E(q), which
is given by the modulus of the position q4 of the pole, versus the spatial mo-
mentum, one finds that for the blocked Dirac operator the values fall exactly
on top of the linear continuum dispersion relation, E(q) = |q|, essentially
almost all the way up to the cutoff π/a. This indicates that the discretization
errors are small.

Finally we comment on the chiral properties of the blocked lattice Dirac
operator D̃(q). It is a simple exercise to show that it obeys the Ginsparg–
Wilson equation in the form

D̃(q) γ5 + γ5 D̃(q) = 2 a D̃(q) γ5 D̃(q) . (9.45)

We remark that here we encounter the Ginsparg–Wilson equation with a
slightly different normalization than the original version (7.29), namely an
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extra factor of 2 on the right-hand side. This factor is, however, completely
irrelevant, since the whole program for chiral symmetry on the lattice, which
we presented in Chap. 7, can be implemented with the modified normalization
as well. Thus we find that the blocked theory is also chiral.

To summarize this section, we have shown that blocking free fermions from
the continuum gives rise to

• Proper lattice fermions without doublers and a local action.
• Fermions with a perfect dispersion relation almost up to the cutoff.
• A Dirac operator that obeys the Ginsparg–Wilson equation.

With these three properties it is obvious that the blocking procedure is a pow-
erful method for constructing lattice discretizations of quantum field theories.
In Sect. 9.4 we will show that the emerging chiral lattice symmetry is not a
coincidence but is the consequence of a rather general mapping of continuum
symmetries onto a corresponding lattice theory obtained by blocking. Before
we come to this analysis, we need, however, to address the problem of gener-
alizing the strategy, which we have here outlined for free fermions, to the case
of full QCD where gluons and quark fields are interacting.

9.3 Real space renormalization group for QCD

In the last section we have demonstrated by an explicit calculation for free
fermions that the RG approach of integrating out degrees of freedom above
the cutoff ∼ 1/a is a powerful tool for constructing a lattice discretization of
a quantum field theory. The resulting lattice action has beautiful properties,
in particular discretization effects are absent almost up to the cutoff and the
lattice Dirac operator obeys the Ginsparg–Wilson equation, which is a lattice
manifestation of the continuum chiral symmetry.

For the case of full QCD, i.e., when gauge fields are coupled to the fermions,
the situation is considerably more complicated. A serious obstacle prevents a
direct blocking from the continuum like for free fermions considered in the last
section: The continuum path integral on the right-hand side of (9.32) cannot
be solved in closed form if non-Gaussian terms appear. Such terms are the
interaction terms of the gauge field and the fermions, as well as the cubic and
quartic terms of the gauge action.

The conceptual way out is to use a lattice version of QCD on a very fine
lattice, i.e., a lattice close to the continuum limit where the lattice spacing a
is very small and discretization effects are tiny. This fine lattice replaces the
continuum theory as a starting point for the blocking transformation. Instead
of integrating hypercubes of the continuum we average the lattice fields on
a block of sites of the fine lattice to construct the fields on a coarser lattice.
The action on the coarse lattice is identified through an equation equivalent
to (9.32). Iterating such a real space renormalization group transformation we
may obtain the action of the target theory on a lattice with the coarseness
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Fig. 9.2. Example of an overlapping discrete block spin transformation. We show
for a plane of the lattice how the fermion fields on the fine lattice (filled dots) may
be averaged to construct the blocked fermion fields living on the coarse lattice (open
circles around the sites of the lattice with only even indices). Along the arrows gauge
transporters are included to obtain gauge covariant spinors on the coarse lattice

we want to work at. Up to the cutoff this coarse action will have the same
discretization errors as the theory on the fine lattice we started with. The
physics of the short-distance UV modes, which are averaged over in the RG
transformation, is encoded in terms of the action used on the coarse lattice.
We remark that originally the real space renormalization group was developed
as an approach for analyzing systems of statistical mechanics near criticality
[23, 24]. As an introduction to its application in lattice QCD which goes
beyond our brief sketch we recommend [25].

9.3.1 Blocking full QCD

Let us begin with describing how we can construct new fields living on a
coarse lattice Λ′ with spacing a′ = 2a from fields on a fine lattice Λ with
lattice constant a. Since we now consider QCD, we have to block both the
fermions and the gauge fields. Before we discuss the actual construction, we
set the notational conventions: The space–time index of the fine lattice Λ is
denoted by n and the space–time index of the coarse lattice Λ′ by n′. The
fermion and the gauge fields on the fine lattice are ψn, ψn and Uµ(n), their
blocked counterparts living on the coarse lattice are ψB

n′ , ψB
n′ and UB

µ (n′), and
the genuine coarse fields are denoted by ψ′

n′ , ψ′
n′ and U ′

µ(n′).
We start with discussing the blocking prescription of the fermions. Many

different blocking schemes are possible. A rather simple one is illustrated in
Fig. 9.2, where we show how the fields may be blocked in a plane of the lattice
(the other planes are blocked equivalently). The fermion fields ψn, ψn live on
the sites of the fine lattice (filled dots in the figure) and have to be averaged
suitably for obtaining the blocked fermions ψB

n′ , ψB
n′ , living on the coarse lattice

which we choose to consist of the sites with only even indices of the fine lattice
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(marked by circles in the plot). The blocked fields ψB
n′ , ψB

n′ at a site n′ of the
coarse lattice are obtained by averaging over all the fields ψn, ψn on all lattice
sites n which are connected to n′ by one or more oriented paths. Obviously
the sites of the fine lattice are connected to several sites of the coarse lattice.
Such a type of blocking prescription is referred to as overlapping block spin
transformation.

It is mandatory to keep gauge covariance intact when combining the
fermion fields ψn, ψn from different sites n of the fine lattice. Thus we need to
connect the fields at sites n to the lattice site n′ where we put the blocked field
through gauge transporters U(n′, n). Such transporters are obtained by mul-
tiplying the link variables Uµ(m) of the fine lattice along the oriented paths
in the figure. If a link is run through in negative direction we apply our usual
convention U−µ(m) ≡ Uµ(m− µ̂)†. In order to obtain a blocking prescription
which respects the symmetries of the lattice, several sites n are connected to
n′ by a set of paths which are related by symmetries such as discrete rotations,
reflections etc. We can summarize the blocking of the fermions as

ψB
n′ =

∑

n∈N (n′)




∑

p∈P(n′,n)

sp

∏

(m,µ)∈p

Uµ(m)



ψn ≡
∑

n

ω[U ]n′n ψn . (9.46)

Here N (n′) is a neighborhood of sites n of the fine lattice around the target
site n′ on the coarse lattice. By P(n′, n) we denote the set of paths p that
we want to use for connecting the site n of the fine lattice to n′, e.g., the
choice depicted in Fig. 9.2. The product runs over all the links (m,µ) in the
path p. Each path comes with a coefficient sp. These coefficients must reflect
the symmetries (e.g., paths related to each other by a rotation must have the
same coefficient), and as a normalization condition, we require the coefficients
of all paths connected to a target site n′ to sum up to 1. In the last step of
(9.46) we have rewritten the blocking prescription by introducing a matrix
ω[U ]n′n which depends on the gauge fields U of the fine lattice and collects
all the terms that connect n′ and n. The conjugate fields ψ(n) are blocked
equivalently with the hermitian conjugate of ω[U ]. We point out that, as in
the last section, the blocking procedure is trivial in Dirac space.

Concerning the blocking of the gauge link Uµ(n) one could simply multiply
the two fine link variables that connect two sites of the coarse lattice in order
to obtain the blocked variables. However, also here usually a more general
gauge covariant averaging is used, with a simple version given by

UB
µ (n′) = (1 − α)Uµ(n′)Uµ(n′+µ̂) (9.47)

+
α

6

∑

ν %=µ

(
Uν(n′)Uµ(n′+ν̂)Uµ(n′+ν̂+µ̂)Uν(n′+2µ̂)†

+Uν(n′−ν̂)†Uµ(n′−ν̂)Uµ(n′−ν̂+µ̂)Uν(n′−ν̂+2µ̂)
)

.
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Here µ̂ and ν̂ are unit vectors on the fine lattice pointing in the µ and ν
directions, and α is a real parameter of the blocking procedure. Essentially
the blocking linearly combines paths of links on the fine lattice which connect
neighboring sites on the coarse lattice. Along these paths the ordered products
of the fine link variables are taken into account. Finding an optimal blocking
prescription requires a certain amount of experimenting, and prescriptions
more refined than the one in (9.47) are discussed in [26–29].

We remark that in the above definition the blocked field UB
µ (n′) is not

an element of the gauge group, since the sum of two SU(3) matrices is not
in SU(3). Below we will define how the blocked field UB

µ (n′) is connected to
the link variables U ′

µ(n′) on the coarse lattice, which of course will then be
elements of the gauge group.

Having defined how to obtain the blocked fields ψB , ψB , and UB , we can
now formulate a blocking relation which generalizes (9.32) and defines the
theory on the coarse lattice:

e−S′
F [ψ′,ψ′,U ′]− β′ S′

G[U ′] =
∫
D

[
ψ,ψ

]
D [U ] e−SF [ψ,ψ,U ]− β SG[U ]

× e−TF [ψ′,ψ′,ψB ,ψB ,U]− β TG[U ′,UB] . (9.48)

In this equation SF [ψ,ψ, U ] and S′
F

[
ψ′, ψ′, U ′] are the fermion actions for

the fine and the coarse lattices, and β SG[U ] and β′S′
G [U ′] the corresponding

gauge actions, where β, β′ denote the inverse gauge couplings for the two
lattices. The right-hand side is now a well-defined lattice path integral over
the degrees of freedom on the fine lattice. The blocking functions TF and TG

connect the fermion and gauge fields ψ′, ψ′, U ′ of the target theory on the
coarse lattice to the blocked quantities ψB , ψB, UB . For the fermions we use

TF

[
ψ′, ψ′, ψB , ψB, U

]
= κF

∑

n′

(
ψ′

n′ − b ψB
n′

) (
ψ′

n′ − b ψB
n′

)

= κF

∑

n′

(
ψ′

n′ − b
∑

n

ψnω[U ]†nn′

)

×
(

ψ′
n′ − b

∑

n

ω[U ]n′nψn

)
, (9.49)

where b is a real-valued normalization constant and κF a real parameter that
may be used for tuning properties of the action on the coarse lattice, in par-
ticular its locality. In the second line of (9.49) we have expressed the blocked
fields with the transformation matrix ω[U ] introduced in (9.46). For the gauge
field we define

TG

[
U ′, UB

]
=

∑

n′,ν

( κG

3
Re tr

[
U ′

ν(n′)UB
ν (n′)

]
− N

[
UB

ν (n′)
])

,

exp
(
N

[
UB

ν (n′)
])

≡
∫

dW exp
(
β κG Re tr

[
WUB

ν (n′)†
]
/3

)
. (9.50)
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The second equation defines the normalization N
[
UB

ν (n′)
]
through an integral

over W ∈ SU(3), and κG is again a real parameter of the transformation.

9.3.2 The RG flow of the couplings

In the last section we have defined the blocking prescriptions for fermions and
gauge fields and thus have given a well-defined meaning to the renormalization
group equation (9.48) which connects the actions for the theories on the coarse
and the fine lattices. For an arbitrary coarse configuration ψ′, ψ′, U ′, the right-
hand side of (9.48) defines the action on the coarse lattice in the exponent on
the left-hand side.

We have already remarked that the key idea of the RG transformation is
to include the physics of the modes on the fine lattice in suitable terms in the
action used for the coarse lattice. Such terms can, e.g., look like the clover
term (9.10) introduced in the first section of this chapter. All these terms of
the action on the coarse lattice come with some coefficients c′1, c

′
2 . . ., which

for the example of the clover term correspond to the Sheikholeslami–Wohlert
coefficient of the Symanzik improvement program. We assume that we can
view the RG transformation (9.48) as a mapping in the space of the couplings
which parameterize a lattice QCD action,

β ,c 1 , c2 . . .
RG−→ β′ , c′1 , c′2 . . . , (9.51)

where the β, ci are the couplings on the fine lattice (most of which vanish for
the plain Wilson action which might be the action we start from). For labeling
the couplings we do not distinguish between the fermion and gauge field parts
of the action and only single out the inverse gauge couplings β, β′.

Starting from the theory with couplings β, c1, c2 . . ., we block the fields
and the couplings of the coarse lattice, β′, c′1, c

′
2, . . ., assume values such that

the effects of the integrated-out fields of the fine lattice are taken into account.
At the same time the lattice spacing increases by a scale factor of 2,

a
RG−→ a′ = 2a . (9.52)

We remark that the scale factor of 2 is particular for the blocking transforma-
tion defined by Fig. 9.2 and (9.47), and other blocking prescriptions can have
a different scale factor.

We now ask ourselves whether mapping (9.51) has a fixed point (FP), i.e.,
a set of couplings that is mapped onto itself under the RG transformation
(9.51). Equation (9.52) suggests that two types of fixed points might exist,
corresponding to a = a′ = ∞ or to a = a′ = 0. Obviously only the second
possibility, which often is referred to as critical fixed point, is of interest to
us since it corresponds to the continuum limit a → 0. As we have discussed
in Sect. 3.5.4, the continuum limit of lattice QCD, where a → 0, is obtained
in the limit β → ∞. Thus we expect to find a suitable critical fixed point at
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β = ∞ and parameter values c(1, c
(
2, . . . . Under our RG transformation (9.51)

these values are mapped onto themselves.
In a practical application we cannot start our RG transformation from

β = ∞. However, a detailed analysis of the flow of couplings under repeated
RG transformations (see, e.g., [25]) suggests that it is sufficient to start from
a large but finite value of β and a few steps of repeated RG transformations
will drive the couplings c1, c2, . . . into the fixed point values c(1, c

(
2, . . . .

9.3.3 Saddle point analysis of the RG equation

So far we have specified the blocking prescription for full QCD, defined the RG
transformation (9.48), and identified a possible fixed point which corresponds
to the continuum physics we are interested in. What is left to do is to find a
way of solving the RG transformation (9.48), such that we can construct the
RG action on the lattice.

For this purpose we may use the fact that the critical fixed point we want
to find corresponds to β = β′ = ∞. In this limit the path integral on the
right-hand side of (9.48) is dominated by its saddle point, i.e., a configuration
(not necessarily unique) of gauge fields U on the fine lattice which minimizes
the exponent. On both sides of (9.48) the terms in the exponent which are
multiplied with the inverse couplings β, β′ have to match as we send the
inverse couplings to infinity. We read off the following equation for the gauge
field part of the action:

S′
G [U ′] = min

U

(
SG [U ] + T∞

G

[
U ′, UB

])
. (9.53)

The superscript ∞ attached to the blocking function TG indicates that it also
has to be evaluated at β = ∞. Since we want to identify the so-called fixed
point (FP) action SFP

G at the fixed point, which is defined by the coefficients
c(i that are mapped onto themselves, we can set S′

G = SG = SFP
G and obtain

the equation that identifies the gauge part SFP
G of the fixed point action,

SFP
G [U ′] = min

U

(
SFP

G [U ] + T∞
G

[
U ′, UB

])
(9.54)

= min
U



SFP
G [U ] +

∑

n′,ν

( κG

3
Re tr

[
U ′

ν(n′)UB
ν (n′)

]
− N∞ [

UB
ν (n′)

])


 ,

where in the second step we have inserted the explicit expression of the block-
ing function TG as given in (9.50). The necessary limit β → ∞ is easy to
perform since β enters only through the normalization constant N∞ which
again can be evaluated through its saddle point giving

N∞ [
UB

ν (n′)
]

=
κG

3
max

W∈SU(3)
Re tr

[
WUB

ν (n′)†
]

. (9.55)

Matching the exponents with factors β, β′ in the saddle point analysis of
(9.48) leads to Eq. (9.54) which determines the gauge part of the fixed point
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action. The requirement that also the remaining factors from the fermion
contributions match gives rise to

e−S′
F [ψ′,ψ′,U ′] =

∫
D

[
ψ,ψ

]
e−SF [ψ,ψ,Umin]−TF [ψ′,ψ′,ψB ,ψB ,Umin] , (9.56)

where the right-hand side has to be evaluated for the configuration Umin which
minimizes the right-hand side of the gauge field RG equation (9.54).

The integral on the right-hand side of (9.56) can be solved, since it is
Gaussian. We write the coarse and fine fermion actions with the help of Dirac
operators D′ and D for the coarse and the fine lattices as

S′
F

[
ψ′, ψ′, U ′] =

∑

n′,m′

ψ′
n′ D′ [U ′]n′m′ ψ′

m′ ,

SF

[
ψ,ψ, Umin

]
=

∑

n,m

ψn D
[
Umin

]
nm

ψm . (9.57)

Using the fact that the blocking function TF

[
ψ′, ψ′, ψB , ψB , Umin

]
is also bilin-

ear in ψ and ψ (see (9.49)) we solve the fermionic integral with the techniques
of Sect. 5.1.4. The result of the integral on the right-hand side of (9.56) is the
exponential of a bilinear form for the coarse fields ψ′, ψ′. The kernel of this
bilinear form has to match the kernel in the exponent of the bilinear form on
the left-hand side of (9.56). We obtain

D′ [U ′]
n′m′ = κF δn′m′ (9.58)

−κ2
F b2

(
ω

[
Umin

](
D

[
Umin

]
+ κF b2ω

[
Umin

]†
ω

[
Umin

])−1

ω
[
Umin

])

n′m′

,

which is the RG equation that relates the Dirac operator D′ on the coarse
lattice to the Dirac operator D of the fine lattice.

Equations (9.54) and (9.58) are the two RG equations that connect the
action on the fine lattice to the action on the coarse lattice. It is interesting
to note that the RG equation for the fixed point gauge action is independent
of the problem for the fermions. The RG equation (9.58) for the fermions,
however, needs as input a gauge configuration Umin on the fine lattice, which
minimizes the right-hand side of (9.54). In the next section we discuss how
solutions of (9.54) and (9.58) may be approximated.

9.3.4 Solving the RG equations

The two RG equations (9.54) and (9.58) are nonlinear equations which should
hold for arbitrary coarse background gauge fields U ′. In a first step one has
to determine the fine configuration Umin that corresponds to a given U ′ and
minimizes the right-hand side of (9.54). This configuration is then used in the
RG equation (9.58) for the fermions.
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In order to determine the fixed point gauge action SFP
G and the Dirac

operator D′, both these quantities have to be approximated and parameterized
using a finite number of terms with couplings ci. For the gauge action one may
use a linear combination of traces over closed loops of link variables and powers
thereof,

SFP
G [U ] =

∑

l∈L

∑

m

cm(l)
(

1
3

Re tr [1− Ul]
)m

. (9.59)

In this equation L is a collection of closed loops on the lattice and Ul the
ordered product of link variables along such a loop l ∈ L. The couplings cm(l)
are real parameters of the action. The set L of loops has to be chosen such
that the lattice symmetries, e.g., discrete translations, rotations, are obeyed.
Obviously, the parameterized action (9.59) is a generalization of the Wilson
gauge action (2.49) and reduces to this action if we choose for L the set of all
plaquettes and restrict ourselves only to powers m = 1 in (9.59).

The parameterization of the Dirac operator proceeds in a similar way [30,
31] and may also be viewed as a generalization of the Wilson Dirac operator
(5.51). When we discussed the doubling problem in Sect. 5.2 we were forced
to include terms that come with the unit matrix in Dirac space. In the ansatz
for the parameterized Dirac operator now all possible 16 generators Γk ∈
{1, γµ, σµν , γµγ5, γ5} of the Clifford algebra are used. Similar to the gauge
action we allow for a whole collection of paths p ∈ P(k)

n,m that connect two
sites n,m on the lattice and we obtain [30, 31]

D[U ]nm =
16∑

k=1

Γk

∑

p∈P(k)
n,m

c(k,p)
n,m [U ] Up , (9.60)

where Up denotes the product of link variables along the path p. Again the
set of paths P(k)

n,m has to respect the discrete lattice symmetries. In addition
the set of paths P(k)

n,m and the coefficients c(k,p)
n,m depend on the element of the

Clifford algebra, since for the fermions the reflections and other symmetries
such as charge conjugation (see Sect. 5.4) involve also matrices acting in Dirac
space. The coefficients c(k,p)

n,m [U ] may be gauge-invariant functions of the link
variables Uµ, e.g., they could depend on the local plaquette values.

For the gauge action SFP
G the couplings on both sides of (9.54) are the

same and determine the fixed point action which then is used at arbitrary
β. The actual determination is done via minimizing the difference between
the left-hand and the right-hand sides of (9.54). This step actually involves
two minimizations: The coefficients of the action and the fine configuration
have to be varied. In a practical approach [26–29, 32] one first uses a simpler
gauge action on the right-hand side of (9.54) which serves to determine a
minimal gauge configuration Umin corresponding to a coarse configuration
U ′. In a second step this minimal configuration is then used to determine the
coefficients cm(l) of the parameterized fixed point action (9.59). The resulting
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fixed point gauge action was tested nonperturbatively and was shown to have
only very small cutoff effects [26–29].

For the fermionic RG equation (9.58) an approach, slightly different from
the fixed point action for the gauge fields, was chosen [33–37]. Instead of find-
ing a fixed point solution for the RG equation, a sequence of Dirac operators
is determined using (9.58): One starts from a fine lattice, with very large β
and a Dirac operator D, for the fine lattice where the couplings are held fixed.
The couplings of a new Dirac operator D′ for the coarse lattice are then de-
termined from (9.58). Iterating this step the Dirac operator at the target β,
which gives rise to the resolution one wants to work at, may be determined.
In each step the coefficients are computed from (9.58) by minimizing a χ2

functional which may be chosen as

χ2 =
∑

i

∑

k

∥∥∥
(

D′
[
U ′

(i)

]
− Drhs

[
Umin

(i)

] )
ψrand

(k)

∥∥∥
2

. (9.61)

In this equation D′
[
U ′

(i)

]
is the Dirac operator on the coarse lattice and

Drhs
[
Umin

(i)

]
denotes the right-hand side of the RG equation (9.58). The sum

with index i runs over an ensemble of coarse gauge configurations U ′
(i), i =

1, 2, . . ., and the corresponding minimal configurations determined from the
FP equation (9.54) are denoted as Umin

(i) . The difference of the two Dirac
operators then acts on a set of random vectors ψrand

(k) labeled by an index
k = 1, 2, . . .. The action of the difference of Dirac operators on the ψrand

(k)

produces a set of vectors and by ‖ . . . ‖ we denote the norm of these vectors.
The resulting FP Dirac operator was tested in a series of papers [32–

39] and it was established that the expected properties such as small cutoff
effects can be captured by parameterizations (9.59) and (9.60). Probably even
more important is the fact that the RG equations transport symmetries of
the continuum onto the lattice. For chiral symmetry these properties were
discussed in detail [35, 40, 41]. In particular the FP Dirac operator obeys the
Ginsparg–Wilson equation and the properties which we discussed already in
Chap. 7, such as the correct anomaly, index theorem, follow. We will revisit
the fact that RG transformations transport symmetries onto the lattice in the
next section.

We remark that the parameterization of the Dirac operator (9.60) has
been used also in a different way [38, 42]. Inserting the parameterized Dirac
operator (9.60) into the Ginsparg–Wilson equation (7.29), one can read off a
system of coupled quadratic equations for the coefficients c(k,p)

n,m . After trun-
cation this system can be solved numerically and the resulting coefficients
determine the so-called chirally improved Dirac operator. This operator was
tested extensively [39, 43] and was found to have good chiral properties at a
numerical cost considerably lower than necessary for the overlap operator.
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9.4 Mapping continuum symmetries onto the lattice

In the last section we have seen that a practical implementation of the RG
approach to full lattice QCD is a rather nontrivial enterprise. We conclude
this chapter by presenting another very important application of the real space
renormalization techniques: We show that the blocking transformation may
be used to map symmetries of the continuum action onto a lattice version
of the symmetry for the corresponding lattice action obtained by blocking.
We discuss this connection between continuum and lattice symmetries here
only for the case of fermions. This case is particularly important, since one
of the symmetries of interest is chiral symmetry – a long-standing problem
of the lattice formulation. If one maps the (vectorlike) chiral symmetry in
the continuum onto the lattice, one finds that the emerging structure on the
lattice is the Ginsparg–Wilson equation which we already discussed in detail
in Chap. 7. However, the relation between continuum symmetries and their
lattice counterparts is not restricted to chiral symmetries but may be worked
out for general symmetries of a continuum theory.

9.4.1 The generating functional and its symmetries

Similar to the blocking of free lattice fermions discussed in Sect. 9.2, the start-
ing point of our analysis is again the equation which defines the Dirac operator
D on the lattice through a blocking transformation from the fermionic con-
tinuum action S:

e−ψDψ =
∫

D
[
φ, φ

]
e− (ψ−φB)B (ψ−φB)−SF [φ,φ] . (9.62)

We denote the lattice fermions by ψ, ψ and use vector/matrix notation for all
indices (space–time, color, Dirac). φ, φ are the fermion fields in the continuum
which enter the path integral on the right-hand side. Through integrating over
hypercubes which are centered at the points of the lattice, one constructs from
them the blocked fields φB, φB . These then live on the sites of the lattice and
consequently they have the same indices as the lattice fields ψ,ψ, in particular
a discrete space–time index.

We stress that (9.62) is understood in a background gauge field which is
not integrated over but also has to be blocked in a suitable way to maintain
gauge covariance (see the last section). The continuum path integral in (9.62)
is defined only formally, but could, e.g., be constructed by a lattice theory in
the continuum limit, as done in the last section. Anyway, here we are only
interested in symmetry properties of the fermion part of the action which is a
bilinear form in the fermion fields. For this analysis a formal definition of the
continuum path integral is sufficient.

Here we consider a more general blocking prescription than the one used
in Sect. 9.2 and allow for a nontrivial blocking kernel B which determines how
the blocked fields φB, φB and the lattice fields ψ,ψ are mixed. At the moment
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we leave the blocking kernel B unspecified, but will discuss its role in the end
of this section.

The work by Ginsparg and Wilson [44] starts from (9.62) and analyzes
its behavior under a chiral rotation of the lattice fields. Following [45] we use
a slightly different approach and consider the generating functional on the
lattice defined as

W
[
J, J

]
=

∫
D

[
ψ,ψ

]
eψJ + Jψ−ψDψ , (9.63)

where we have sources J and J coupled to the lattice fermions. Inserting the
exponential of the action from (9.62), we find an expression for the generating
functional through a blocking prescription:

W
[
J, J

]
=

∫
D

[
ψ,ψ

]
eψJ + Jψ

∫
D

[
φ, φ

]
e− (ψ−φB)B (ψ−φB)−SF [φ,φ]

=
∫
D

[
φ, φ

]
e−φBBφB−SF [φ,φ]

∫
D

[
ψ,ψ

]
e−ψBψ +ψ(J+BφB)+ (J+φBB)ψ

= det[B] eJB−1J

∫
D

[
φ, φ

]
eJφB +φBJ −SF [φ,φ] . (9.64)

In the last step we have already formally solved the Gaussian integral over the
lattice fields by completing the square in the exponent (compare the discussion
in Sect. 9.2). The resulting expression (9.64) is the lattice generating functional
in terms of a continuum path integral.

We now explore how a symmetry of the continuum fermion action SF

affects the lattice generating functional W
[
J, J

]
. In particular we consider a

transformation of the continuum fields:

φ → φ′ = eiεT φ , φ → φ′ = φ eiεT . (9.65)

The generators T, T of the transformation are matrices acting in Dirac space.
More general transformations are possible as is discussed in [46]. Our choice
implies that the blocked fields φB and φB transform in the same way as
the original fields, since the blocking from φ, φ to φB, φB is a purely scalar
operation, in other words the blocked fields are essentially linear combinations
of the continuum fields. We stress that the generators T and T are independent
transformations, i.e., φ and φ need not transform in the same way.

We now assume that the transformation (9.65) is a symmetry of the action

SF

[
φ′, φ′ ] = SF

[
φ, φ

]
. (9.66)

One can also evaluate the integral over the continuum fields in the last line
of (9.64) using the transformed variables φ′, φ′. Doing so and exploring the
invariance of the action, we obtain
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∫
D

[
φ′, φ′ ] eJφB ′ +φB ′J −SF [φ′,φ′] (9.67)

=
∫
D

[
eiεT φ, φ eiεT

]
eJeiεT φB +φBeiεT J −SF [φ,φ]

=
(
1 + iεATT + O(ε2)

) ∫
D

[
φ, φ

]
eJeiεT φB +φBeiεT J −SF [φ,φ] .

In the last step we have transformed the measure of the continuum path
integral and taken into account that transformation (9.65) could be anomalous
with the anomaly ATT showing up in the Jacobian of the transformation
[47, 48]. Since later we will evaluate all expressions up to O(ε), we have kept
only the leading term of the Jacobian. For non-anomalous transformations
T, T one has ATT = 0.

Inserting result (9.67) back into the expression for the generating func-
tional (9.64), we find that continuum symmetries (9.65) and (9.66) imply the
following symmetry of the generating functional on the lattice:

W
[
J, J

]
= eJ

(
B−1−eiεT B−1eiεT

)
J (

1 + iεATT + O(ε2)
)

W
[
eiεT J, JeiεT

]
.

(9.68)
Equation (9.68) summarizes how a continuum symmetry reflects itself in the
lattice generating functional W

[
J, J

]
constructed through blocking.

9.4.2 Identification of the corresponding lattice symmetries

Having analyzed the manifestation of a continuum symmetry in our lattice
generating functional, we now want to identify a corresponding symmetry on
the lattice which also fulfills the symmetry condition (9.68). For that purpose
we consider transformed lattice fields

ψ′ = eiεM ψ , ψ′ = ψ eiεM . (9.69)

The two generators M,M for the lattice transformation are not yet known and
we want to identify how they depend on the continuum generators T, T and
the blocking kernel B. The fact that the transformation should be a symmetry
of the lattice action implies

ψ′ D ψ′ = ψ eiεM D eiεM ψ
!= ψ D ψ . (9.70)

For later use we remark that when expanded in ε the invariance condition
(9.70) at O(ε) implies the commutation relation

M D + D M = 0 . (9.71)

As we have done for the continuum expression in the last section, we now
express the generating functional (9.63) in terms of the transformed fields
ψ′, ψ′ and explore the implications of the symmetry (9.70):
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W
[
J, J

]
=

∫
D

[
ψ′, ψ′ ] e−ψ′Dψ′ +ψ′J + Jψ′

, (9.72)

= det
[
eiεM

]
det

[
eiεM

] ∫
D

[
ψ,ψ

]
e−ψDψ +ψeiεM J + JeiεMψ .

The two Jacobi determinants on the right-hand side come from the transfor-
mation of the measure on the lattice. Using the relation det[A] = exp(tr lnA)
(see (A.54)) we can expand them as

det
[
eiεM

]
det

[
eiεM

]
= 1 + iε tr

[
M + M

]
+ O(ε2) . (9.73)

Combining the last two equations we find the symmetry relation for the gen-
erating functional which is implied by lattice symmetry (9.70):

W
[
J, J

]
=

(
1 + iε tr

[
M + M

]
+ O(ε2)

)
W

[
eiεMJ, JeiεM

]
. (9.74)

Now we compare symmetry condition (9.74) from the lattice transformation
to the corresponding continuum relation (9.68). By setting the two equal we
obtain the equation

eJ
(

B−1−eiεT B−1eiεT
)

J (
1 + iεATT + O(ε2)

)
W

[
eiεT J, JeiεT

]
(9.75)

=
(
1 + iε tr [M + M ] + O(ε2)

)
W

[
eiεMJ, JeiεM

]
,

which we can use to identify the lattice transformation M,M that matches
the continuum transformation T, T . The last step is to insert the explicit form
of the generating functional,

W
[
J, J

]
= det[D] e JD−1J , (9.76)

which is obtained by directly solving the Gaussian integral (9.63). When in-
serting (9.76), (9.75) becomes (we drop the factor det[D] on both sides)

e J
(

B−1−eiεT B−1eiεT
)

J (
1 + iεATT + O(ε2)

)
e JeiεT D−1 eiεT J (9.77)

=
(
1 + i ε tr

[
M + M

]
+ O(ε2)

)
e JeiεM D−1 eiεM J .

The last equation holds for arbitrary ε and arbitrary sources J, J . Thus the
terms bilinear in J and J , as well as the O(ε) terms independent of J, J , have
to match. For the latter term we conclude

ATT = tr
[
M + M

]
, (9.78)

and thus have identified the lattice counterpart of the continuum anomaly.
The terms bilinear in the sources J, J lead to a symmetry relation for the

quark propagator,
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B−1 − eiεT B−1eiεT + eiεT D−1 eiεT = eiεM D−1 eiεM . (9.79)

When expanding in ε one obtains at O(ε)

T (D−1 − B−1 ) + (D−1 − B−1 )T = MD−1 + D−1M . (9.80)

This equation is solved by

M = T (1− B−1D ) , M = (1− DB−1 )T . (9.81)

These are the generators of the lattice symmetry which we wanted to find.
They depend on the continuum generators T, T , the blocking kernel B, and the
lattice Dirac operator D. Inserting M,M into the symmetry relation (9.71)
one ends up with a nonlinear equation for the lattice Dirac operator D,

T D + D T = D [B−1 T + T B−1 ]D , (9.82)

which is a generalization of the Ginsparg–Wilson equation [45, 46].
When inserting the explicit form (9.81) into the anomaly equation (9.78)

one obtains the final form for the anomaly

AT T = tr
[
T + T − T B−1 D − D B−1 T

]
. (9.83)

It is easy to check that when blocking a vector-like continuum theory
with a blocking kernel B = 2 · 1 and considering a chiral rotation in the
continuum, where T = T = γ5, Eq. (9.82) reduces to the usual Ginsparg–
Wilson relation (7.29). The generators M,M of (9.81) are generators (7.2)
of Lüscher’s symmetry and the anomaly assumes the form A = − tr [γ5D],
which we have already discussed in Chap. 7.

We have shown that with the help of the blocking transformation we can
identify the mathematical structures that implement chiral symmetry on the
lattice, in particular the Ginsparg–Wilson equation, the chiral transformations
on the lattice, and the form of the anomaly. All of these were developed
individually in Chap. 7, but now follow in one go from a single calculation.

Recently the blocking transformations were explored further with the mo-
tivation of implementing properly Weyl fermions on the lattice as needed for
the electroweak sector of the standard model [46, 49–51]. A central insight
[50] concerns the role of the blocking matrix B:

1. The blocking matrix B must break all symmetries that are anomalous in
the target theory.

2. Other symmetries may be broken by B if it is convenient.

For the case of QCD the choice of B ∝ 1, which we have used in the above
discussion, is sufficient since only the U(1) axial transformation is anomalous.
For the case of the electroweak sector additional breaking is required due to
the fermion number anomalies. For this case a suitable blocking matrix was
proposed in a particular model [50] and the correct symmetry pattern was
shown to emerge for the corresponding fixed point action. For the resulting
Ginsparg–Wilson equations it is possible to find an explicit solution [51] using
the overlap construction.
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10

More about lattice fermions

The implementation of chiral symmetry on the lattice discussed in Chap. 7
was an unsolved puzzle for many years. The problem has continuously in-
spired the lattice community and led to a variety of formulations for fermions
on the lattice. So far we have focused on two kinds of fermions in our presen-
tation, Wilson-type and overlap fermions. Wilson fermions provide a simple
robust and easy-to-use discretization, while overlap fermions implement chiral
symmetry in the most transparent way.

Here we introduce some of the other ideas for discretizing fermions on the
lattice; most of them rooted in the problem of chiral symmetry. The exceptions
are heavy quark effective formulations designed for simulations with heavy
quarks like charm and bottom. We stress that we can only cover the basic
ideas for the various lattice fermions and refer to the original literature for
more detailed accounts and the current status of numerical simulations.

10.1 Staggered fermions

Staggered fermions, often referred to as Kogut–Susskind fermions [1], are a
formulation where the 16-fold degeneracy of the naive discretization is re-
duced to only four quarks, while at the same time a remnant chiral symmetry
is maintained. This is achieved by a transformation which mixes spinor and
space–time indices, distributing the quark degrees of freedom on the hyper-
cubes of the lattice.

10.1.1 The staggered transformation

In order to construct staggered fermions we go back to the naive discretization
already presented in (2.29). The free naive fermion action reads

SF [ψ,ψ] = a4
∑

n∈Λ
ψ(n)

(
4∑

µ=1

γµ
ψ(n + µ̂) − ψ(n − µ̂)

2a
+ mψ(n)

)
. (10.1)

Gattringer, C., Lang, C.B.: More About Lattice Fermions. Lect. Notes Phys. 788,
243–266 (2010)
DOI 10.1007/978-3-642-01850-3 10 c© Springer-Verlag Berlin Heidelberg 2010
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As we have found in Sect. 5.2, due to the doublers, this action gives rise to 16
quark flavors. In the Wilson Dirac operator 15 of these are removed by adding
the Wilson term at the cost of explicitly breaking chiral symmetry.

However, action (10.1) has a symmetry which can be used to reduce the
number of quark flavors without having to break chiral symmetry. To make
explicit this symmetry one performs a space–time-dependent variable trans-
formation of the fermion fields ψ(n), ψ(n). This so-called staggered transfor-
mation eliminates the matrices γµ in (10.1). To see this we define new field
variables ψ(n)′ and ψ(n)′ by setting

ψ(n) = γn1
1 γn2

2 γn3
3 γn4

4 ψ(n)′ , ψ(n) = ψ(n)′ γn4
4 γn3

3 γn2
2 γn1

1 . (10.2)

The transformation matrices are simply products of the γµ raised to a power
given by the corresponding component nµ of the site index n = (n1, n2, n3, n4).
The staggered transformation thus mixes space–time and Dirac indices.

Since the γ-matrices obey γ2
µ = 1, it is obvious that the mass term is in-

variant, i.e., ψ(n)ψ(n) = ψ(n)′ψ(n)′. In the kinetic term of (10.1) the ψ-field
is shifted by one lattice constant with respect to the ψ-field. Thus transforma-
tions (10.2) for the fields on the two sites differ by one power of γµ. This extra
γµ cancels the one which is explicit in the kinetic term of (10.1). Taking into
account the necessary reordering of the γ-matrices one finds for the terms of
the derivative in, e.g., the 3-direction

ψ(n) γ3 ψ(n ± 3̂) = (−1)n1+n2 ψ(n)′1ψ(n ± 3̂)′ (10.3)

and similar for the terms in the other directions. The action (10.1) turns into

SF

[
ψ′, ψ′ ] = a4

∑

n∈Λ
ψ(n)′1

(
4∑

µ=1

ηµ(x)
ψ(n + µ̂)′ − ψ(n − µ̂)′

2 a
+ mψ(n)′

)
,

(10.4)
where we have introduced the staggered sign functions

η1(n) = 1 , η2(n) = (−1)n1 , η3(n) = (−1)n1+n2 , η4(n) = (−1)n1+n2+n3 ,
(10.5)

which take over the role of the matrices γµ. Obviously action (10.4) is diagonal
in Dirac space and has the same form for all four Dirac components.

The staggered fermion action is obtained by keeping only one of the four
identical components. Coupling the gauge fields we end up with

SF [χ, χ] = a4
∑

n∈Λ
χ(n)

(
4∑

µ=1

ηµ(x)
Uµ(n)χ(n+µ̂)−U†

µ(n−µ̂)χ(n−µ̂)
2 a

+ mχ(n)

)
,

(10.6)
where χ(n) and χ(n) are Grassmann-valued fields with only color indices but
without Dirac structure. Having discarded 3 of the 4 identical copies, we can
expect that from the 16 quark degrees of freedom of the naive action only 4
have survived. This hypothesis will be analyzed in the next section.
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We have claimed that the staggered transformation leaves a subset of the
chiral symmetry intact. In order to see this, we first must identify γ5 in the
new spinor basis obtained by the transformation (10.2). The new form of γ5

can be read off when transforming a pseudoscalar bilinear according to (10.2):

ψ(n) γ5 ψ(n) = η5(n)ψ(n)′ 1ψ(n)′ , (10.7)

where we have defined

η5(n) = (−1)n1+n2+n3+n4 . (10.8)

This site-dependent sign plays the role of γ5 in the staggered world. It is
obvious that for vanishing mass m the staggered action (10.6) is invariant
under the continuous (α ∈ R) transformation

χ(n) −→ eiαη5(n) χ(n) , χ(n) −→ χ(n) eiαη5(n) . (10.9)

This is the global chiral symmetry for the staggered theory, where the quark
degrees of freedom are distributed on the hypercube.

10.1.2 Tastes of staggered fermions

The staggered transformation mixes lattice and Dirac indices. This raises con-
ceptual as well as technical questions. An example for the latter is the problem
of constructing hadron interpolators with definite spin and parity. For details
of this construction we refer the reader to the literature (e.g., [2]), although
some of the ideas can be found in the subsequent discussion.

In order to understand better the conceptual status of staggered fermions,
we here address the question of how many quarks the staggered action (10.6)
describes and which symmetries relate them. For simplicity this study is done
in the free case (Uµ(n) ≡ 1).

For the analysis of staggered fermions we follow the strategy developed
in [3, 4]. The idea is to group together the 16 sites of a hypercube and to
interpret the corresponding degrees of freedom as 4 species of quarks, each
of them with the familiar 4-spinor structure. Let us assume that the Nµ are
even, i.e., we have an even number of sites in all directions. We consider the
non-intersecting hypercubes with origins separated by multiples of two lattice
spacings. We write our site labels nµ = 0, 1, . . . Nµ − 1 in terms of labels hµ

for these hypercubes and labels sµ for the corners of the hypercube as

nµ = 2hµ + sµ with hµ = 0, 1, . . . Nµ/2 − 1 , sµ = 0, 1 . (10.10)

With this labeling of sites, the staggered sign function ηµ(n) defined in (10.5)
becomes independent of h and is a function of only the vector s:

ηµ(n) = ηµ(2h + s) = ηµ(s) . (10.11)
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We now want to combine all degrees of freedom, χ(2h+s), χ(2h+s) (sµ = 0, 1),
sharing a common hypercube label h into a new set of fields q(h)ab, q(h)ab

with indices a, b = 1, 2, 3, 4. In order to sneak in the familiar γ-matrices we
define s-dependent 4×4 matrices Γ (s) as products of the γµ (compare (10.2)),

Γ (s) = γs1
1 γs2

2 γs3
3 γs4

4 . (10.12)

It is easy to check that they obey the orthogonality and completeness relations
familiar from Fierz transformation,

1
4

tr
[
Γ (s)†Γ (s′)

]
= δs,s′ ,

1
4

∑

s

Γ (s)∗
ba Γ (s)

b′a′ = δa,a′δb,b′ . (10.13)

We define new quark fields q(h) and q(h) as linear combinations of the fields
χ(2h + s), χ(2h + s):

q(h)ab ≡ 1
8

∑

s

Γ (s)
ab χ(2h + s) , q(h)ab ≡ 1

8

∑

s

χ(2h + s)Γ (s)∗
ba . (10.14)

Using (10.13), the linear transformations can be inverted to obtain

χ(2h + s) = 2 tr
[
Γ (s)†q(h)

]
, χ(2h + s) = 2 tr

[
q(h)Γ (s)

]
. (10.15)

With the help of these equations we can express the mass term of (10.6) in
terms of the q and q fields:

a4
∑

n

χ(n)χ(n) = a4
∑

h

∑

s

χ(2h + s)χ(2h + s) (10.16)

= 4 a4
∑

h

∑

s

q(h)ba Γ (s)
ab Γ (s)†

b′a′ q(h)a′b′

= (2a)4
∑

h

tr [q(h)q(h)] ,

where in the second step the completeness relation of (10.13) was used. The
kinetic term of (10.6) is somewhat more tricky since the shifted fields χ(2h +
s ± µ̂) mix contributions from different hypercubes. We first must assign the
proper hypercube to the individual fields χ(2h+s± µ̂) and only after that we
can represent them in terms of the q(h)ab. For the forward shifted field one
finds

χ(2h + s + µ̂) =

{
χ(2h + s + µ̂) = 2 tr

[
Γ (s+µ̂)†q(h)

]
for sµ = 0 ,

χ(2(h+µ̂) + s−µ̂) = 2 tr
[
Γ (s−µ̂)†q(h+µ̂)

]
for sµ = 1 .

(10.17)
From definition (10.12) of the Γ (s) follows Γ (s±µ̂) = ηµ(s)γµΓ (s), which brings
(10.17) into the form
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χ(2h + s + µ̂) = 2ηµ(s) tr
[
Γ (s)†γµ

(
q(h)δsµ,0 + q(h + µ̂)δsµ,1

)]
. (10.18)

Performing the equivalent steps for the field shifted in negative µ-direction,
χ(2h+ s− µ̂), we can write the µ-contribution to the kinetic term of (10.6) as

4a4
∑

h

1
2a

∑

s

tr
[
q(h)Γ (s)

]
(10.19)

× tr
[
Γ (s)†γµ

(
q(h)δsµ,0 + q(h + µ̂)δsµ,1 − q(h − µ̂)δsµ,0 − q(h)δsµ,1

)]
.

Unfortunately we cannot yet sum over s and employ the completeness relation
of (10.13), since in the second factor Γ (s)† is combined with s-dependent terms.
This problem is overcome by realizing that in the summation over hypercubes,
defined in (10.10), we could have started also at µ̂ instead of the origin. If one
writes the sums over h and s in (10.16) with this shifted convention, some of
the q and q are shifted by ±µ̂ and the hypercube indices sµ = 0 and sµ = 1
are interchanged. The latter change provides the sµ contributions missing in
(10.19). Thus we can average the two ways of writing (10.19) and obtain after
some algebra

SF [q, q] = (2a)4
∑

h

(
m tr [q(h)q(h)] (10.20)

+
∑

µ

tr [q(h)γµ∇µq(h)] − a
∑

µ

tr [q(h)γ5'µq(h)γµγ5]

)
,

where we have defined derivative operators on the blocked lattice (note that
here the sites are separated by b ≡ 2a),

∇µf(h) =
f(h + µ̂) − f(h − µ̂)

2b
, 'µf

(
h) =

f(h + µ̂) − 2f(h) + f(h − µ̂)
b2

.

(10.21)
Guided by the form of the first two terms of (10.20), we identify Dirac indices
α and quark species labels t for our fermion fields by setting

ψ(t)(h)α ≡ q(h)αt , ψ
(t)

(h)α ≡ q(h)tα . (10.22)

Expressed in terms of these new fields the free staggered action reads

SF

[
ψ,ψ

]
= b4

∑

h

(
4∑

t=1

(
mψ

(t)
(h)ψ(t)(h) +

4∑

µ=1

ψ
(t)

(h) γµ∇µψ(t)(h)

)

− b

2

4∑

t,t′=1

4∑

µ=1

ψ
(t)

(h) γ5 (τ5τµ)tt′ 'µψ(t′)(h)



 . (10.23)

Here we have introduced the matrices τµ = γT
µ , µ = 1, 2, . . . 5, and b is the

lattice spacing on the lattice of hypercubes. In order to distinguish the Nt = 4
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different species of quarks labeled by t = 1, 2, 3, 4 from usual flavor, they are
referred to as tastes of staggered fermions. The first two terms in (10.23)
are diagonal in taste space and represent the mass and kinetic terms for the
four tastes of fermions expected to be described by (10.6). The third term
is reminiscent of a Wilson term, but mixes the different tastes. This taste
symmetry-breaking term reduces the symmetry of the kinetic term which is
invariant under independent vector and axial rotations for each of the four
tastes. The taste-breaking term is only invariant under the remaining symme-
try U(1) × U(1) given by the rotations

ψ′ = eiαψ , ψ′ = ψ e−iα ,

ψ′ = eiβΓ5ψ , ψ′ = ψ eiβΓ5 , (10.24)

where we have defined the taste-mixing generator Γ5 = γ5⊗τ5. This symmetry
may be identified with a subgroup of the axial taste symmetry group SU(Nt)A.

10.1.3 Developments and open questions

The symmetry of the four tastes, described by the staggered action, is not the
full symmetry of four independent (massless) flavors of quarks, but instead
reduced to (10.24). Although the taste-breaking term vanishes in a naive con-
tinuum limit, its presence in numerical simulations which are necessarily done
at finite lattice spacing raises several questions.

On a more fundamental level one has to understand whether effects of
taste breaking survive the continuum limit as it is performed in an actual
calculation. As we have discussed in Sect. 3.5.4, the “true continuum limit”
is obtained by driving the couplings to a critical point where the correlation
length diverges. The open question thus is whether the taste-breaking terms
change the behavior of the theory at the critical point, or in more fancy words,
whether the taste-breaking terms change the universality class of the theory.

Ignoring these more fundamental issues one can try to minimize the effect
of the taste-breaking terms. In order to come up with a strategy to do so,
it is important to remember that the different tastes are combinations of the
staggered field variables χ and χ on a hypercube. Thus the different tastes see
different link variables Uµ(n). Consequently strongly fluctuating gauge links
will give rise to large taste symmetry-breaking effects. A possible strategy
to ameliorate these effects is to use gauge actions that suppress such strong
fluctuations, see, e.g., [5–7]. An alternative approach, already addressed in
Sect. 6.2.6, is to apply blocking or smearing to the gauge fields which locally
averages out large fluctuations [8, 9].

The effect of such blocking or smearing steps can, e.g., be assessed by
analyzing the spectrum of the Dirac operator for staggered fermions (given
here for the χ-basis (10.6)):

Dst(n|m) = mδn,m +
4∑

µ=1

ηµ(n)
Uµ(n)δn+µ̂,m − Uµ(n − µ̂)†δn−µ̂,m

2a
. (10.25)
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It is easy to see that for the massless case this Dirac operator is anti-hermitian
and obeys a staggered γ5-hermiticity:

Dst†(n|m) = −Dst(n|m) = η5(n)Dst(n|m)η5(m) . (10.26)

These two properties guarantee that the eigenvalues come in complex conju-
gate pairs and all have the same real part given by the quark mass. Thus fluc-
tuations of the real part of the eigenvalues are impossible and no exceptional
configurations (compare the discussion in Sect. 6.2.5) can occur. Consequently
the determinant (product of all eigenvalues) is always real and nonnegative
and, for nonzero quark mass, strictly positive.

Furthermore, if taste symmetry breaking was absent, then each eigenvalue
would be 4-fold degenerate. In a systematic comparison [10, 11] it was indeed
found that a sufficient amount of blocking or smearing drives the eigenvalues
toward 4-fold degeneracy.

Staggered fermions are widely used for dynamical simulations. The reason
is that due to the reduced number of degrees of freedom (no Dirac structure)
staggered fermions are numerically cheaper to simulate and at the same time
are chirally symmetric. However, a problem is that the action describes four
tastes of quarks, while in a realistic QCD simulation one would like to have
two light mass-degenerate u and d quarks and one heavier strange quark. In
order to suitably reduce the number of degrees of freedom it has been proposed
to simulate QCD with an effective action given by

exp(−Seff) = exp(−SG) det[Dst(mud)]
1
2 det[Dst(ms)]

1
4 , (10.27)

where mud is the average of u and d quark masses and ms the strange quark
mass. From a mathematical point of view, taking the square or quartic roots
of the determinant is unproblematic, since as we have shown it is real and
positive. However, this procedure is quite nontrivial from a conceptual per-
spective and we must ask ourselves if the universality class remains the same
in this approach. Probably even more important is the question whether the
effective action can be expressed in the form of a local lattice field theory. For
a snapshot of the ongoing debate about these issues see [12–16] and references
therein. Although the conceptual problems are not all resolved, simulations
with staggered fermions have found good agreement with experimental results.
Examples are found in [17–20].

10.2 Domain wall fermions

The overlap formulation of lattice QCD, discussed in Sect. 7.4, is related to
another version of chiral lattice QCD, so-called domain wall fermions. Domain
wall fermions make use of a 5D lattice and construct chiral Dirac fermions on a
4D interface of the 5D lattice. The action of the 5D theory is simple, i.e., rather
similar to the usual Wilson formulation. This implies that already established
numerical methods can be applied with only minor adaptions.
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10.2.1 Formulation of lattice QCD with domain wall fermions

The basic concepts for domain wall fermions were outlined in the seminal
paper [21] by Kaplan. The ideas were developed further in [22–24] giving rise
to the formulation of domain wall fermions mainly used now.

The idea is to work with a 5D lattice Λ5 = Λ × ZN5 , where Λ is our 4D
lattice and N5 denotes the number of lattice points in the auxiliary 5-direction.
On this lattice we use fermion fields which are described by the 4-component
spinors

Ψ(n, s)α
c

, Ψ(n, s)α
c

with n ∈ Λ , s = 0, . . . , N5−1 , α = 1, . . . , 4 , c = 1, 2, 3 .

(10.28)
Obviously the Dirac (index α) and color (index c) structures are unchanged
and we have simply added an additional direction which we label with s. The
fermion action for the 5D domain wall theory is given by (setting a ≡ 1)

Sdw
F [Ψ, Ψ, U ] =

∑

n,m∈Λ

N5−1∑

s,r=0

Ψ(n, s)Ddw(n, s|m, r)Ψ(m, r) , (10.29)

where we use vector/matrix notation for the Dirac and color indices. The 5D
domain wall Dirac operator Ddw is given by

Ddw(n, s|m, r) = δs,r D(n|m) + δn,m Ddw
5 (s|r) . (10.30)

The first term is diagonal in the auxiliary direction and is built with the usual
4D Wilson Dirac operator (compare (5.51) where we write explicitly also color
and Dirac indices)

D(n|m) = (4 − M5) δn,m − 1
2

±4∑

µ=±1

(1− γµ) Uµ(n) δn+µ̂,m . (10.31)

We have introduced a new mass parameter M5, which is not to be confused
with the quark mass parameter m of the 4D theory. The avoidance of doublers
and the positivity of the transfer matrix restrict this parameter to 0 < M5 < 1.
The link variables Uµ(n), µ = 1, 2, 3, 4 are elements of the gauge group as
usual. They do not depend on the coordinate in the fifth dimension, i.e.,
identical copies are used for the different 4D slices.

The second contribution to (10.30) is diagonal in Λ and the operator
Ddw

5 (s|r), acting in the 5-direction, is given by

Ddw
5 (s|r) = δs,r − (1 − δs,N5−1)P− δs+1,r − (1 − δs,0)P+ δs−1,r

+m (P− δs,N5−1δ0,r + P+ δs,0δN5−1,r) . (10.32)

Here P± = (1 ± γ5)/2 are the usual chiral projectors acting on the Dirac
indices. The parameter m will turn out to be the mass parameter of the 4D
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target theory. For the fermions at mass m = 0 the boundary conditions in the
5-direction are fixed, since hopping from s = N5 − 1 in positive 5-direction is
blocked by the factor (1 − δs, N5−1), and the hopping from s = 0 in negative
direction is eliminated by (1 − δs,0). Only the terms containing the mass m
connect the slices at s = 0 and s = N5−1. On the 4D lattice Λ the conventional
boundary conditions are used: periodic in the spatial directions 1,2,3 and anti-
periodic in time (4-direction). The link variables Uµ(n) are periodic in all four
directions of Λ and, as mentioned, one uses identical copies for all values of
the 5-coordinate s. We stress that in the 5-direction there is no component U5.

Having presented the action for the 5D fermion fields Ψ, Ψ , we can now
construct the 4D physical fields ψ,ψ which live on the 4D boundary of Λ5.
These are defined as

ψ(n) = P− Ψ(n, 0) + P+ Ψ(n,N5−1) , ψ(n) = Ψ(n,N5−1)P− + Ψ(n, 0)P+ ,
(10.33)

where n ∈ Λ. The physical fields ψ and ψ thus are built from the degrees of
freedom on the first (s = 0) and last (s = N5 − 1) 4D slice. The spinors ψ,ψ
inherit their Dirac and color indices from Ψ, Ψ .

The physical fields ψ and ψ can now be used to construct the physical
observables of interest. For example the 4D scalar density ψ(n)ψ(n) assumes
the form

ψ(n)ψ(n) = Ψ(n,N5 − 1)P− Ψ(n, 0) + Ψ(n, 0)P+ Ψ(n,N5 − 1) , (10.34)

when (10.33) is used to express the physical density ψ(n)ψ(n) in terms of the
5D fields. We remark that (10.34) corresponds exactly to the term in (10.32)
which is proportional to m. Thus m can be identified as the mass parameter
of the 4D theory.

The transition to the 4D world can be implemented in a transparent way
by using generating functionals (compare (5.32)). For our purpose we define
the generating functional as

W
[
J, J

]
=

〈
exp

(
∑

n∈Λ

(
J(n)ψ(n) + ψ(n)J(n)

)
)〉

(10.35)

=

〈
exp

(
∑

n∈Λ

(
J(n) (P− Ψ(n, 0) + P+ Ψ(n,N5 − 1))

+
(
Ψ(n,N5 − 1)P− + Ψ(n, 0)P+

)
J(n)

)
)〉

5

.

Here J(n) and J(n) are Grassmann-valued source fields which have the same
indices (Dirac and color) as the physical fields ψ(n), ψ(n) they couple to. In
this equation 〈 . . . 〉 denotes the expectation value of the 4D target theory
and 〈 . . . 〉5 denotes the vacuum expectation value in the 5D world, which we
discuss in detail in the next section.

Once the generating functional W
[
J, J

]
is defined, one can work with it

like in the regular 4D formulation. In particular W
[
J, J

]
can be differentiated
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with respect to individual components of J(n) or J(n) which bring the cor-
responding components of the physical fields ψ,ψ down from the exponent.
After the physical observables are built from these, one sets the sources to
J = J = 0 (compare Sect. 5.1.6). As a result the vacuum expectation values
of the 4D target theory are formulated as the expectation values in the 5D
formulation. The latter is then used to evaluate the expressions.

10.2.2 The 5D theory and its equivalence to 4D chiral fermions

So far we have introduced the fields Ψ and Ψ which live on our 5D lattice
and their action and discussed how to construct from them the fields of the
4D theory. We still need to present the detailed definition of the 5D vacuum
expectation values 〈 . . . 〉5 and finally we should convince ourselves that for
m = 0 the 5D theory gives rise to 4D chiral fermions.

In order to make connection to a 4D overlap-type theory, in addition to the
5D fermion fields Ψ, Ψ the 5D path integral also contains the fields Φ,Φ which
have the same indices as the fermion fields (10.28) but are bosonic variables
(not Grassmann numbers). Thus they are often referred to as pseudofermion
fields (see Sect. 8.1.3) or Pauli–Villars fields. From a physical point of view
their role is the removal of heavy degrees of freedom which appear for large N5.

The definition of the 5D path integral for the vacuum expectation value
〈 . . . 〉5, needed for the generating functional W [J, J ] given in (10.35), reads

〈O〉5 =
1
Z

∫
D[Ψ, Ψ, Φ, Φ, U ] e−Sdw

F [Ψ,Ψ,U ]−S
pf
B [Φ,Φ,U ]−SG[U ] O[Ψ, Ψ, U ] .

(10.36)
Sdw

F [Ψ, Ψ, U ] is the domain wall action and SG[U ] is some lattice version of
the 4D gauge action, e.g., the Wilson action (2.49). The path integral is over
the 5D fields Ψ and Ψ and the 4D gauge fields U . We have also introduced
the integral over the bosonic pseudofermions Φ and Φ. The action for the
pseudofermions is given by

Sdw
F [Φ,Φ,U ] =

∑

n,m∈Λ

N5−1∑

s,r=0

Φ(n, s)Dpf(n, s|m, r)Φ(m, r) ,

with Dpf(n, s|m, r) = δs,r D(n|m) + δn,m Dpf
5 (s|r) . (10.37)

The first part is identical to the term in the Dirac operator (10.30), i.e., given
by the Wilson operator (10.31). Concerning the difference operator Dpf

5 for the
5-direction different choices are possible. A variant convenient for numerical
simulations is [25]

Dpf
5 (s|r) = Ddw

5 (s|r)
∣∣∣
m=1

. (10.38)

A direct connection of the 5D theory (10.36) to a variant of the over-
lap formulation was given in [26]. Using an elegant chain of transformations
Neuberger showed (for a slightly different choice of Dpf) that (see also [27])
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det
[
Ddw

]
= det

[
Dov

N5

]
det

[
Dpf

]
. (10.39)

Applying this result to our path integral (10.36) we find
∫

D[Ψ, Ψ, Φ, Φ] e−Sdw
F [Ψ,Ψ,U ]−S

pf
B [Φ,Φ,U ] =

det[Ddw]
det[Dpf]

= det[Dov
N5

] . (10.40)

Here we have used that for the path integral over the bosonic pseudofermions
the determinant appears in the denominator (compare Sect. 5.1.4). Obviously
the pseudofermion fields in (10.36) are needed to cancel the factor det[Dpf] in
(10.39). This step can also be viewed as a transformation of the integration
variables with det[Dpf] being the corresponding Jacobian.

The Dirac operator Dov
N5

is often referred to as the truncated overlap op-
erator and is given by (we drop an irrelevant overall factor of 1/2 compared
to the notation in [26])

Dov
N5

= 1 + γ5 tanh
(

N5

2
H̃

)
N5→∞−→ 1 + γ5 sign [H̃] . (10.41)

The operator H̃ is a (nonlocal) variant of the operator H which we used in
Sect. 7.4 to construct the overlap operator (see [26] for the exact definition).
Equation (10.41) shows that in the limit N5 → ∞, where the tanh approaches
the sign function, the operator assumes the form of the overlap operator (7.78),
and a quick calculation similar to (7.82) shows that Dov

∞ obeys the Ginsparg–
Wilson equation (7.29).

The truncated overlap operator describes the 4D theory and in the limit
N5 → ∞ gives rise to massless fermions. For finite N5 the chirality-violating
effects are exponentially suppressed with an exponent ∝ N5. In practical sim-
ulations typical values used are N5 = 10−30. The parameter M5 can be tuned
to minimize the chirality-violating effects.

Working with domain wall fermions has the big advantage that numerical
algorithms for 4D Wilson fermions can be easily adapted for the 5D domain
wall formulation. As the Wilson formulation, the domain wall operator also
contains only nearest neighbor terms and no evaluation of matrix-valued func-
tions as for the overlap operator (see Sect. 7.4.3) is required. For an example
of dynamical simulations with domain wall fermions, see [28].

10.3 Twisted mass fermions

Twisted mass QCD (tmQCD) is a formulation which in its simplest form is
for QCD with two mass-degenerate quark flavors of Wilson fermions (QCD
with isospin). The isospin degree of freedom is used to introduce an additional
mass term with a nontrivial isospin structure. This twisted mass term provides
a useful infrared regulator and furthermore can be utilized to obtain O(a)
improvement of the lattice formulation. Twisted mass QCD was first outlined
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in [29–31]. In this section we give a brief introduction. For more detailed
recent reviews, which cover also the present status of the numerical analysis
of tmQCD, we recommend [32, 33].

10.3.1 The basic formulation of twisted mass QCD

We begin our discussion with presenting the defining equations. As already
stated, tmQCD is a theory for two mass-degenerate quarks.1 Thus from now
on we denote by χ and χ quark fields which in addition to Dirac and color
indices carry also a flavor index which may assume Nf = 2 values. For no-
tational convenience we will suppress the indices and use matrix/vector no-
tation instead. The fermion action for lattice tmQCD with Wilson fermions
then reads

Stw
F [χ, χ, U ] = a4

∑

k,n∈Λ
χ(k)

(
D(k|n)12 + m12 δk,n + iµγ5τ

3 δk,n

)
χ(n) .

(10.42)
We display unit matrices 12 only for flavor space and omit them for color and
Dirac. D(k|n) denotes the massless Wilson Dirac operator for a single flavor
(compare (5.51)):

D(k|n) =
4
a

δk,n − 1
2a

±4∑

µ=±1

(1− γµ) Uµ(k) δk+µ̂,n . (10.43)

Action (10.42) differs from the usual action for two mass-degenerate flavors
with mass m by adding the term iµγ5τ3 to the Dirac operator. The real pa-
rameter µ is called the twisted mass. We stress, however, that the conventional
mass term is trivial in color, Dirac, and flavor space, while the twisted mass
term is trivial only in color space, has a γ5 in Dirac space, and the third Pauli
matrix τ3 = diag(1,−1) acts in flavor space.

One of the original [29] motivations for introducing the twisted mass term2

was its use as an infrared regulator which removes exceptional configurations
(compare Sect. 6.2.5). Using just the standard mass these are absent only for
sufficiently large values of m. The fact that the twisted mass term is a save
remedy against exceptional configurations follows from the following chain of
identities:

det[D12 + m12 + iµγ5τ
3] = det[D + m + iµγ5] det[D + m − iµγ5] (10.44)

= det[D + m + iµγ5] det[γ5(D + m − iµγ5)γ5]
= det[D + m + iµγ5] det[D† + m − iµγ5]
= det[(D + m + iµγ5) (D† + m − iµγ5)]
= det[(D + m)(D + m)† + µ2] > 0 for µ -= 0 .

1For the generalization of tmQCD to the case of quarks with different masses we
refer the reader to [34, 35].

2Another motivation being the simplification of renormalization properties (see
the following discussion and Chap. 11).
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The twisted mass Dirac operator is diagonal in flavor space and thus the de-
terminant for the 2-flavor operator was written as a product of two determi-
nants for a single flavor. Subsequently the γ5-hermiticity (5.76) of the Wilson
Dirac operator was employed. The inequality in the last line holds because
the eigenvalues of the product (D + m)(D + m)† are real and nonnegative.
Thus a nonvanishing value of the twisted mass µ ensures that the determinant
of the twisted mass Dirac operator is strictly positive and consequently zero
eigenvalues, which cause the exceptional configurations, are excluded. In more
detail one can show that the spectrum of the twisted mass Dirac operator in
the complex plane is expelled from a strip of width 2µ along the real axis
[36]. Equation (10.44) establishes that the determinant is real and positive for
arbitrary gauge configurations and thus standard Monte Carlo techniques are
applicable.

The above discussion shows that the twisted mass term may be used as
an alternative infrared regulator which can be combined with the usual mass
term. Since it is possible to work with both, nonvanishing m and µ, it is
convenient to introduce the so-called polar mass M and the twist angle α:

M =
√

m2 + µ2 , α = arctan(µ/m) . (10.45)

With these definitions the mass terms of tmQCD can be written as

m12 + iµγ5τ
3 = Meiαγ5τ

3
with m = M cos(α) , µ = M sin(α) . (10.46)

The case of α = π/2, i.e., m = 0, µ > 0, is often referred to as maximal or full
twist. Below it will be shown that choosing full twist is special since it implies
O(a) improvement. The value α = 0 corresponds to zero twist.

It is instructive to perform a simple transformation of the fermion fields
to new variables ψ,ψ defined as

ψ = R(α)χ , ψ = χR(α), R(α) = eiαγ5τ
3/2 . (10.47)

A few lines of algebra show that the fermion action (10.42) turns into

SF [ψ,ψ, U ] = a4
∑

k,n∈Λ
ψ(k)

(
Dtw(k|n) + M 12 δk,n

)
ψ(n) . (10.48)

Obviously the twisted mass term has disappeared and is replaced by a conven-
tional mass term with a mass parameter given by the polar mass M defined
in (10.45). The twisted Dirac operator Dtw is now a genuine 2-flavor operator
and reads

Dtw(k|n) =
4
a

e−iαγ5τ
3
δk,n − 1

2a

±4∑

µ=±1

(
e−iαγ5τ

3
− γµ

)
Uµ(k) δk+µ̂,n . (10.49)

We observe that the naive parts of the lattice Dirac operator (the terms with
γµ) are not affected by the twist and only the Wilson term is rotated. Thus
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in the basis ψ,ψ, which is referred to as the physical basis, the mass term and
the kinetic terms assume their conventional form and only the term needed to
remove the doublers is introduced in a twisted form. In the naive continuum
limit this latter term is of O(a) and thus vanishes as a → 0. Our old basis
χ, χ, where the twist affects the mass term, is known as the twisted basis.

We finally remark that the symmetries of QCD assume a different form
in the twisted basis. To give an example, it is easy to see that the modified
parity transformations (the gauge field still transforms as stated in (5.72))

χ(n, n4)
P→ γ4 τ1,2 χ(−n, n4) , χ(n, n4)

P→ χ(−n, n4) γ4 τ1,2 (10.50)

leave the action (10.42) invariant. Note that we have two different choices and
can use either of the two Pauli matrices τ1 or τ2. A collection of the twisted
forms of other symmetries can, e.g., be found in the appendix of [33].

10.3.2 The relation between twisted and conventional QCD

Having introduced a new type of infrared regulator, one of course has to
establish that in some limit the twisted formulation describes conventional
QCD. At the end of the last section we have seen that when changing to
the physical basis χ, χ, the twist affects only the Wilson term which in the
naive continuum limit vanishes anyway. This is already a good sign, but the
equivalence of conventional and tmQCD has to be established also for the
proper continuum limit (compare Sect. 3.5.4).

We begin with studying the relation between conventional and twisted
mass QCD by analyzing the situation in the continuum. The conventional
action for two mass-degenerate fermions in the continuum is given by

SF [ψ,ψ,A] =
∫

d4x ψ(x) ( γµDµ(x)12 + M 12 ) ψ(x) , (10.51)

where Dµ(x) = ∂µ + iAµ(x). Vacuum expectation values of some operator
O are computed with the path integral which is formally defined as (SG[A]
denotes the action for the gauge fields)

〈O〉 =
1
Z

∫
D[ψ,ψ,A] e−SF [ψ,ψ,A]−SG[A] O[ψ,ψ,A] . (10.52)

Relating this conventional form of the vacuum expectation value to the cor-
responding expression in tmQCD is now merely an exercise in changing in-
tegration variables. The transformation we need is the one given in (10.47).
Under this transformation the conventional continuum action (10.51) changes
to the continuum tmQCD action given by

S tw
F [χ, χ,A] =

∫
d4x χ(x)

(
γµDµ(x)12 + m12 + iµγ5τ

3
)

χ(x) , (10.53)
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where the mass parameters m and µ are related to the mass parameter M of
the conventional action (10.51) through (10.46). Since transformation (10.47)
is non-anomalous, the integration measure remains invariant and, somewhat
formally, we can write D

[
ψ,ψ

]
= D [χ, χ ]. Thus we define vacuum expecta-

tion values in the twisted basis as

〈Otw〉tw =
1

Ztw

∫
D[χ, χ,A] e−SF [χ,χ,A]−SG[A] Otw[χ, χ,A] . (10.54)

We are left with the task of relating an operator O[ψ,ψ,A] in the physical
basis to its counterpart Otw[χ, χ,A] in the chiral basis. This is a simple exercise
as we illustrate in an example, where we choose O to be the nonsinglet axial–
pseudoscalar correlator,

O
[
ψ,ψ

]
= A1

µ(x)P 1(y) where Aa
µ =

1
2

ψ γµ γ5 τa ψ , P a =
1
2

ψ γ5 τa ψ .

(10.55)
A brief calculation shows that transformation (10.47) gives rise to

A1
µ → cos(α)A1

µ
tw− sin(α)V 2

µ
tw

, P 1 → P 1 tw with

Aa
µ
tw =

1
2
χγµγ5τ

aχ , V a
µ

tw =
1
2
χγµτaχ , P a tw =

1
2
χγ5τ

aχ . (10.56)

Inserting these, we find for our correlator the following relation between the
vacuum expectation value in the conventional and the twisted form:

〈O〉 =
〈
A1

µ(x)P 1(y)
〉

(10.57)

= cos(α)
〈
A1

µ
tw(x)P 1 tw(y)

〉

tw
− sin(α)

〈
V 1

µ
tw(x)P 1 tw(y)

〉

tw
=

〈
Otw

〉
tw

.

In an equivalent way arbitrary n-point functions of conventional QCD can be
mapped onto linear combinations of n-point functions of tmQCD.

The above discussion is based on the (formal) expressions in the con-
tinuum. To carry the arguments for the relation between conventional and
tmQCD over to the lattice one has to consider the renormalized theory in the
continuum limit using a mass-independent renormalization scheme [30]. The
renormalized mass and twisted mass parameters are

m(r) = Zm (m − mc) , µ(r) = Zµ µ , (10.58)

and the twist angle in the renormalized theory must be defined as

α = arctan(µ(r)/m(r)) . (10.59)

Maximal twist, i.e., α = π/2, corresponds to m(r) = 0. This case is particularly
simple, since setting the bare mass parameter to its critical value, m = mc,
which can, e.g., be identified by a vanishing PCAC mass (see Sect. 11.1.2),
already leads to m(r) = 0.

In the renormalized theory we can use the arguments given for the contin-
uum discussion above and conclude that standard QCD correlation functions
can be expressed as linear combinations of correlators in tmQCD. This rela-
tion remains valid for finite lattice spacing up to discretization errors [30].
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10.3.3 O(a) improvement at maximal twist

Although an important initial motivation for the introduction of tmQCD was
the cure for exceptional configurations, today the property of O(a) improve-
ment is considered more important. We now briefly address this feature of
tmQCD at maximal twist [37].

With the introduction of the twisted mass term we now have two param-
eters m,µ, which define the physics we want to describe. The relative size of
the two mass parameters is characterized by the twist angle α. We have al-
ready observed that among the possible values of α, the case of α = π/2, i.e.,
maximal twist is singled out. For maximal twist the discretization effects of
O(a) vanish and the leading corrections appear only at O(a2). This property
is referred to as O(a) improvement of tmQCD and will be discussed now.

The special role of α = π/2 can already be seen in the free case. In mo-
mentum space the twisted mass Dirac operator reads (compare (5.48) for the
case of Wilson fermions with conventional mass term)

i
a

4∑

µ=1

γµ sin(pµa) +
1
a

4∑

µ=1

(1 − cos(pµa)) + M cos(α) + iM sin(α)γ5τ
3 ,

(10.60)
where we have dropped all unit matrices. It is straightforward to check that
the inverse of this matrix, i.e., the propagator in momentum space, is given
by

− i
a

∑
µ γµ sin(pµa) + 1

a

∑
µ (1−cos(pµa)) + M cos(α) − iM sin(α)γ5τ3

1
a2

∑
µ sin(pµa)2 +

(
1
a

∑
µ (1−cos(pµa)) + M cos(α)

)2
+ M2 sin(α)2

.

(10.61)
The energy of the fermion described by this propagator is given by the position
of the pole. Expanding the denominator in a gives

p2 (1 + aM cos(α)) + M2 + O(a2) , (10.62)

and for the two poles we find (M2/P 2 is held fixed)

i p4 = ±
√

p2 + M2 ∓ a cos(α)
M3

2
√

p2 + M2
+ O(a2) . (10.63)

It is evident that the O(a) correction to the dispersion relation in the contin-
uum, ip4 = ±

√
p2 + M2, comes with a factor of cos(α). This allows to turn

off the O(a) term by choosing maximal twist, i.e., by setting α = π/2. From
an algebraic point of view this result can be understood by noting that at
α = π/2 the Wilson term and the mass term, which now consist of only the
twisted part, are orthogonal in isospin space. Thus a mixed term, which is of
O(a), cannot emerge.

Having illustrated that the spectrum of the free theory is O(a) improved
at maximal twist is certainly interesting but of course one would like to es-
tablish O(a) improvement for full tmQCD. This problem can be addressed
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by performing the Symanzik improvement program (compare Sect. 9.1) for
tmQCD. In order to have maximal twist in the renormalized theory we need
a vanishing renormalized quark mass parameter m(r). Thus we consider the
case where the bare standard mass parameter m is tuned to its critical value,
m = mc, which may be defined by the requirement of a vanishing PCAC
quark mass (compare Sects. 9.1.4 and 11.1.2). Setting m = mc implies for the
renormalized quark mass parameter, m(r) = 0, as needed for maximal twist.
In this case the relevant contribution to the effective continuum action is (we
show only the leading term – for a complete list see [31])

Seff
F = S0 + aS1 + ... + O(a2) , (10.64)

with

S0 =
∫

d4xχ
(
γµDµ + iµγ5τ

3
)
χ , S1 = csw

∫
d4x χσµνFµνχ . (10.65)

The correction S1 to the continuum action S0 is treated as an insertion in
expectation values, such that we obtain for the vacuum expectation value of
some operator O:

〈O〉 = 〈O〉0 + a 〈∆O〉0 − a 〈O S1〉0 + O(a2) . (10.66)

The expectation value 〈. . .〉0 is with respect to the action S0 and by ∆O we
denote the counterterms for the operator O. The operators O may be classified
according to their symmetry under the discrete chirality transformation

χ −→ i γ5τ
1 χ , χ −→ iχγ5τ

1 , (10.67)

which is one of the symmetries of massless QCD with two flavors (see
Sect. 7.1.2). Operators can be decomposed into components with definite
transformation properties under (10.67):

O −→ ±O with ∆O −→ ∓∆O . (10.68)

The terms of the effective action transform as

S0 −→ S0 , S1 −→ −S1 . (10.69)

Using (10.68) and (10.69) we can analyze the contributions to the expectation
values (10.66). For chirally even operators we find the symmetries

〈O S1〉0 = −〈O S1〉0 = 0 , 〈∆O〉0 = −〈∆O〉0 = 0 , (10.70)

while for odd operators

〈O〉0 = −〈O〉0 = 0 , 〈O S1〉0 = 〈O S1〉0 , 〈∆O〉0 = 〈∆O〉0 . (10.71)

Putting things together we conclude
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〈O〉 = 〈O〉0 + O(a2) for O even , (10.72)
〈O〉 = a (〈∆O〉0 − 〈O S1〉0) + O(a2) for O odd .

This implies that either only O(a2) terms survive (for even operators) or the
expectation value 〈O〉 vanishes in the continuum limit (odd operators). Thus
we can conclude that the vacuum expectation values of nonvanishing operators
are O(a) improved at tmQCD with maximal twist. The only parameter that
has to be tuned to achieve this is the bare quark mass which has to be set to
its critical value, m = mc.

The ease with which O(a) improvement is obtained and the technical ad-
vantages which come with the removal of exceptional configurations make
tmQCD an attractive lattice formulation. From a numerical point of view
no new techniques are required, which, for example, are needed in the case
of dynamical overlap calculations. A rich program of numerical simulations
with tmQCD was conducted in recent years and for a comprehensive recent
overview we refer to [33].

10.4 Effective theories for heavy quarks

For lattice calculations involving heavy quarks, such as the charm and the
bottom quark, special techniques are needed. The central idea is to remove
the dominant scale, the mass mh of the heavy quark, and to work with an
effective Lagrangian. This procedure gives rise to two formulations known as
nonrelativistic QCD (NRQCD) and heavy quark effective theory (HQET).

10.4.1 The need for an effective theory

We begin with a short discussion of the scales involved when working with
heavy quarks. The masses of the charm and bottom quarks in the MS scheme
[38] are

mc ≈ 1.27(9) GeV , mb ≈ 4.20(12) GeV . (10.73)

The masses for typical charmonium or bottomium states are, e.g.,

MJ/ψ = 3.096 GeV , MΥ = 9.460 GeV . (10.74)

If we want to reliably describe these states on the lattice the cutoff 1/a should
be larger than these masses. Using (6.71) for converting MeV to fm, one finds
that the lattice spacing has to obey

a < 0.064 fm for charm , a < 0.021 fm for bottom . (10.75)

On the other hand we need a spatial volume that is sufficiently large to accom-
modate the hadrons we want to study and a long enough temporal extent to
be able to track the Euclidean propagators when we determine their masses.
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A typical value would be a spatial extent of about 2 fm. While for the charm
quark lattices of sufficient size will be in reach soon, for the bottom quark
a naive approach to simulations with heavy quarks would require very large
lattices with typical sizes of at least O(100)4.

A large part of the mass of the J/ψ and Υ mesons comes from the valence
quark masses themselves. Thus if one is able to remove this trivial contri-
bution to the hadron mass from the theory, the typical energy scales of the
problem are reduced considerably. Then one can work again with a lattice
spacing which is large enough such that the required number of lattice points
is sufficiently small for a numerical simulation.

10.4.2 Lattice action for heavy quarks

The first ideas for treating heavy quarks on the lattice were put forward
in [39–43]. As for the case of heavy quarks in the continuum (see [44] for a
standard text), the central idea is to scale out the mass mh of the heavy quark.
This is done in a systematic way by the Foldy–Wouthuysen transformation
well known from quantum mechanics. In the system where the heavy quark
is at rest it provides an expansion of the action for the heavy flavors in terms
of 1/mh. Following a standard textbook such as [45] (see also [42, 44]), the
Euclidean continuum action density L = q (γµDµ + mh) q with Dµ = ∂µ+iAµ

is expanded in the form (4 is the time direction)

q (γµDµ + mh) q −→ ψh

(
mh + D4 − D2

2mh
− σ · B

2mh

)
ψh + O

(
1/m2

h

)
.

(10.76)
Here, B denotes the chromomagnetic fields and D2 =

∑3
j=1 D2

j is the spatial
covariant Laplace operator. On the right-hand side the original 4-spinors q, q
for the relativistic quarks are replaced by projected, nonrelativistic spinors
ψh, ψh which obey

P+ψh = ψh , ψhP+ = ψh , P+ = 1
2 (1 + γ4) . (10.77)

It has to be remarked that in expansion (10.76) the usual renormalizability of
QCD is obtained only by including all orders in 1/mh. How vacuum expecta-
tion values with only a finite number of terms in (10.76) can be defined such
that they have a finite continuum limit will be described in the next section.

Let us now invoke the lattice. Guided by expansion (10.76) of the contin-
uum action we write the lattice action up to a given order N in the expan-
sion as

Sh,N = Sstat +
N∑

ν=1

S(ν) ,

Sstat =
∑

n∈Λ
ψ(n)

(
∇̃4 + δmh

)
ψ(n) , S(ν) =

∑

i

ω(ν)
i S(ν)

i . (10.78)
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Here we have written explicitly the static contribution Sstat which does not
give rise to spatial propagation. In this term the mass mh was dropped to get
rid of the unwanted scale mh. For dimensional reasons a mass type of term
has to be included, which is taken into account by a residual mass parameter
δmh which is also needed for matching and renormalization purposes. By
∇̃4 we denote the temporal backward derivative on the lattice, ∇̃4f(n) ≡
f(n) − U4(n − 4̂)f(n − 4̂).

The nonstatic terms are organized in powers of 1/mh labeled by the index
ν. The leading nonstatic terms are (compare (10.76))

S(1)
1 = − 1

2

∑

n∈Λ
ψh(n)σ · B ψh(n) ,

S(1)
2 = − 1

2

∑

n∈Λ
ψh(n)D2 ψh(n) ,

S(2)
1 =

1
8

∑

n∈Λ
ψh(n)∇ · E ψh(n) , etc . (10.79)

On the lattice, the chromomagnetic field B and the chromoelectric field E are
implemented by a suitable discretization which expresses these fields through
the plaquettes Uµν , e.g.,

Ej = Fj4 , Bj =
εj4µν

2
Fµν , Fµν = i Im (1− Uµν) . (10.80)

This discretization of the field strength tensor Fµν follows from expansion
(2.53) of the plaquette Uµν used for the construction of the gauge action.

The covariant (spatial) Laplace operator D2 is discretized as (we set a ≡ 1)

D2f(n) −→
3∑

j=1

(
Uj(n)f(n + ĵ) − 2f(n) + Uj(n − ĵ)†f(n − ĵ)

)
. (10.81)

In the classical theory the expansion coefficients ω(ν)
i would be given by

ω(ν)
i = 1/m ν

h , as can be seen from comparing (10.76), (10.78), and (10.79).
Here we are using HQET as an effective theory for fully quantized QCD and
have to keep the coefficients ω(ν)

i as free parameters which will be fixed later
when matching HQET and QCD. It is, however, important to keep in mind
the power counting of the coefficients in expansion (10.78):

ω(ν)
i = O

(
m − ν

h

)
(andO(a) ≡ O(1/m)) . (10.82)

We remark that ultimately we are interested in QCD with both light and
heavy flavors. The action for the light flavors is included in a form discussed
in the previous chapters and will be added in the next section. We stress that
also the observables one is interested in may mix heavy and light quarks. A
typical example would be the study of the heavy–light D and B mesons.
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10.4.3 General framework and expansion coefficients

Having discussed the expansion of the action and its discretization, we need to
address the quantization and renormalization of our effective theory. In other
words, the coefficients of the effective action have to be determined. Several
approaches to this problem can be found in the literature. In our presentation
we follow the nonperturbative strategy outlined [46] for HQET and reviewed
in great detail in [47]. For a more general presentation of recent results in
NRQCD and HQET we refer the reader to [48, 49].

We have already pointed out that expanding the action in 1/mh up to a
fixed-order N spoils the usual renormalizability of QCD. However, it can be
shown that the static term Sstat of the effective action alone gives rise to a
renormalizable theory. Thus the Boltzmann factor for the heavy quark part
of the action is expanded as

e−Sh = e−Sstat

(
1 − S(1) − S(2) +

1
2

(
S(1)

)2
+ . . .

)
, (10.83)

and the nonstatic terms appear as insertions in expectation values computed
with the static action. The expansion is terminated after all terms up to the
desired order N are included. In (10.83) all terms up to order N = 2 are
displayed.

The form (10.83) of the expansion leads to the formulation usually referred
to as HQET. An alternative is to keep in the exponent also the D2 contribu-
tion, the S(1)

2 term in (10.79), together with Sstat. This leads to the NRQCD
formulation (see, e.g., [50]).

For our final expression we still have to add the action for the light quarks,
SL, and the action for gauge fields, SG. We obtain for the expectation value
of some observable O in HQET on the lattice

〈O〉h =
1

Zh

∫
D[Φ] e−SG−SL−Sstat

(
1 − S(1) − S(2) +

1
2

(
S(1)

)2
+ . . .

)
O ,

Zh =
∫
D[Φ] e−SG−SL−Sstat

(
1 − S(1) − S(2) +

1
2

(
S(1)

)2
+ . . .

)
. (10.84)

The integration is over all fields collectively denoted by Φ, i.e., the light and
heavy quark fields and the gauge variables. We remark that for many appli-
cations also the observable O is expanded in 1/mh. It can be shown that the
expanded static vacuum expectation values in (10.84) can be renormalized
when all local operators with the proper symmetries and dimension ≤ N are
included.

The theory defined by (10.84) is described by the following parameters:
From the gauge and light quark sectors we have the gauge coupling, the masses
of the light quarks, and maybe some coefficients of improvement terms. The
heavy quark part contains δmh and the coefficients ω(ν)

i , ν = 1, . . . N , where
N is the desired order of the expansion.
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The remaining problem is how to set the parameters of HQET such that
expectation values match their QCD counterparts. In principle it would be
possible to evaluate a set of observables Φk(mh) in both theories and to require

ΦHQET
k (mh) = ΦQCD

k (mh) + O
(
m−(N+1)

h

)
, (10.85)

where the number of observables has to equal the number of parameters.
However, such a brute force procedure faces exactly the difficulties which we
outlined in Sect. 10.4.1, i.e., the need for large, very fine lattices.

A nonperturbative strategy to overcome this obstacle was presented in [46].
The idea is to start with a sufficiently fine lattice such that the boundaries
for the cutoff given in (10.75) are obeyed. In order to have a lattice which in
lattice units is small enough to be accessible to a numerical simulation, one
is restricted to lattices with a small physical size of L = 0.2−0.5 fm. On the
small lattice the matching conditions

ΦHQET
k (mh, L) = ΦQCD

k (mh, L) + O
(
m−(N+1)

h

)
(10.86)

are imposed. The HQET part of the calculation is repeated now using a lattice
of extent 2L. The two results can be used to compute the step-scaling functions
Fk (see [51]) defined as

ΦHQET
k (mh, 2L) = Fk

(
ΦHQET

k (mh, L)
)

. (10.87)

The dimensionless functions Fk describe the change of the complete set of
observables under a volume change L → 2L. For the step-scaling functions
the continuum limit can be performed and subsequently they are used to
transport the physical observables to sufficiently large volumes where contact
with experimental results can be made.

We conclude with emphasizing again that, although for the matching we
here mainly follow the proposal [46], several variants of obtaining effective
theories for heavy quarks have been discussed. Various applications of HQET,
e.g., the determination of the mass of the b-quark [46, 52], have been proposed
and more general reviews of the corresponding results can be found in [48–
50, 54, 55].
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11

Hadron structure

In this section we address an important type of nonspectrum calculations.
Hadron structure is explored by matrix elements of suitable operators be-
tween hadronic states or the vacuum. The simplest such properties are the
coefficients of the hadron propagators, related to matrix elements between the
hadronic state and the vacuum, the so-called decay constants. They describe
the weak decay properties of the hadron. We discuss in some detail the lattice
calculation of decay constants as a representative of many technically similar
problems.

The matrix elements of vector or axial vector currents between single
hadron states lead to the electromagnetic and the weak form factors. Fur-
ther matrix elements provide information on semileptonic decays, quark- and
gluon structure functions, and other information for effective descriptions like
the operator product expansion.

All these involve field values and as such have to be related to contin-
uum quantities by renormalization prescriptions. Lattice perturbation theory
provides such relations. The results, however, are often not applicable in the
nonperturbative regime at the moderately small lattice spacing where one
usually works. One therefore relies also on nonperturbative determinations of
the renormalization constants that allow contact with observables given in a
continuum renormalization scheme such as MS.

In this chapter we will give an introductory survey of the related methods
to obtain matrix elements and renormalization factors in lattice calculations.

11.1 Low-energy parameters

In the early years of hadron theory several hypotheses were introduced to de-
scribe the observed features. The current algebra hypothesis related the (flavor
SU(3)) vector and the axial vector currents in a triplet of current commuta-
tion relations. Since the vector current is normalized due to its relation to the
electric charge, the commutation relations also lead to a normalization of the

Gattringer, C., Lang, C.B.: Hadron Structure. Lect. Notes Phys. 788, 267–299 (2010)
DOI 10.1007/978-3-642-01850-3 11 c© Springer-Verlag Berlin Heidelberg 2010



268 11 Hadron structure

axial vector current. Coupled to the weak interaction this current describes,
among other features, the decay of the pion. The partially conserved axial cur-
rent (PCAC) hypothesis then relates the divergence of the axial vector current
to the pion field, thus defining the pion decay constant as a proportionality
factor. Another factor in the relation is the pion mass squared, indicating that
the axial charge would be conserved for exactly massless pions, i.e., Goldstone
bosons. From these assumptions many experimental results in hadron physics
can be explained. Meanwhile QCD turned out to be the underlying theory,
and what were hypotheses are now properties of that theory. In the lattice
approach we want to verify these properties and measure the corresponding
physical parameters.

In this section we consider only u and d quarks. These are light enough
such that the explicit breaking of chiral flavor SU(2) is small.

11.1.1 Operator definitions

In calculations of matrix elements one has to specify the relation between the
fields and the observed particle states. In quantum field theory the pion field
couples to all states with the quantum numbers JPC = 0−+ of the pion. The
pseudoscalar interpolator

P a = 1
2 ψ γ5 τ

a ψ (11.1)

has these quantum numbers. We here write the fermion fields as flavor doublets
ψ = (u, d) and τa, a = 1, 2, 3, are the Pauli matrices.1 Charged quark bilinear
operators are defined through

P+ ≡ P 1 − iP 2 = 1
2 ψ γ5 (τ1 − i τ2)ψ = d γ5 u ,

P− ≡ P 1 + iP 2 = 1
2 ψ γ5 (τ1 + i τ2)ψ = u γ5 d . (11.2)

Analogously we introduce the vector and axial vector fields

Vµ = 1
2 ψ γµ ψ , V a

µ = 1
2 ψ γµ τ

a ψ , V ±
µ = V 1

µ ∓ iV 2
µ ,

Aµ = 1
2 ψ γµ γ5 ψ , Aa

µ = 1
2 ψ γµ γ5 τ

a ψ , A±
µ = A1

µ ∓ iA2
µ .

(11.3)

The axial vector current is related to the vector current by commutation
relations in current algebra. For conserved vector currents the normalization
is therefore fixed for both Aµ and Vµ.

One may obtain equivalent relations also directly in Euclidean space in
terms of identities of integrals over expectation values of products of field
operators [1]. In our presentation we translate the Minkowskian results of
the continuum quantum field theory to Euclidean form by replacing it with
t. In order to facilitate switching between continuum and lattice notation we

1In our discussion we only consider the flavor SU(2) symmetry group.
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introduce the abbreviation ω for the normalization factor of the spatial Fourier
transform, with

ω ≡
{

(2π)3 for the continuum,
|Λ3| for the lattice, (11.4)

where |Λ3| = N3 denotes the spatial lattice volume.
Results of a quantum field theory calculation need to be renormalized

before they can be compared to experimental numbers (see Sect. 11.2). We
denote quantities renormalized according to a continuum renormalization
scheme with a superscript (r). As our reference scheme we use the MS scheme
at a scale of µ = 2GeV. We define the renormalization factors ZP , ZV , and
ZA through

P (r)a = ZP P a , V (r)a = ZV V a , A(r)a = ZA Aa (11.5)

and note that they may depend on details like the lattice action and the
scale. In Sect. 11.2 we discuss how one determines the renormalization factors
relating the bare lattice fields to the renormalized fields.

Also the quark mass renormalizes multiplicatively, as does the condensate

m(r) = Zm m , 〈ψψ〉(r) = ZS 〈ψψ〉 , (11.6)

which introduces further renormalization factors Zm and ZS . These are re-
lated via ZS = 1/Zm since the combination mψψ is a renormalization invari-
ant. If chiral symmetry holds, one has the additional relations ZS = ZP and
ZA = ZV .

If the fermionic lattice action does not obey chiral symmetry, the unrenor-
malized bare quark mass may have an additive contribution, called residual
mass, such that m = mbare + mres.

Free bosonic fields in quantum field theory obey a standard normalization.
Let us assume that the asymptotic, physical pion is described by such a renor-
malized triplet field with components φ(x)(r)a. Then in Euclidean space–time
the matrix element with the single pion state at rest |πb(p = 0)〉 is

〈0|φ(x)(r)a |πb(p = 0)〉 = δab e−Mπ t , (11.7)

where x= (x, t). The propagator of this field reads

〈0|φ(r)a(p = 0, t)φ(r)b(0)|0〉 =
1

2Mπ
√
ω
δab e−Mπ t , (11.8)

where (p = 0, t) denotes the projection to zero spatial momentum in the
time slice t (see Sect. 6.1.4). However, we still have to relate this field to the
pseudoscalar lattice field operator P . This will be done in the next section.

In the standard model of electroweak interaction the decay of hadrons (like
the pion or the kaon) into leptons is mediated by a – compared to hadron
masses – very heavy intermediate boson. The effective interaction is then
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described by a Lagrangian coupling the left-handed weak to the hadronic
current, e.g., for the decay π → e νe one has the coupling term

GF√
2

cos θc ( uγµ(1 − γ5)d ) ( eγµ(1 − γ5)νe ) . (11.9)

This is an example of the general operator product expansion of the weak
Hamiltonian, which will be discussed in more detail in Sect. 11.4.2.

The pion decay according to (11.9) leads to the matrix element of the
axial vector current between the π state and the vacuum. The relation to the
physical (renormalized) isovector pion field defines the pion decay constant
Fπ, i.e.,

∂µA(r)a
µ = M2

π Fπ φ
(r)a . (11.10)

(There are also other conventions differing by, e.g., a factor of
√

2. Our def-
inition corresponds to an experimental value of Fπ = 92.4(3) MeV [2]). The
divergence of the axial vector current acts as interpolating field operator of
the pion. This is an operator identity in Minkowski space; in Euclidean space
it holds in expectation values.

Various equivalent expressions for expectation values may be derived. With
(11.7) we get the so-called partially conserved axial vector current or PCAC
relation:

∂µ〈0|A(r)a
µ (x) |πb(p = 0)〉 = δab M2

π Fπ e−Mπ t . (11.11)

These relations allow us to derive the decay constant Fπ from pair cor-
relators between the operators A4 and ∂tA4. As an example, the 〈A4 A4〉
correlation function is dominated by the single pion at large t and therefore
has the asymptotic behavior

〈A(r)+
4 (p = 0, t)A(r)−

4 (0) 〉 ∼ Mπ F 2
π√

ω
e−Mπ t , (11.12)

where the symbol ∼ denotes the asymptotic behavior at large t. The kaon
decay constant is computed analogously, with one of the quarks replaced by
the strange quark. More details will be discussed in Sect. 11.1.4.

Decay constants are but one of the quantities that may be obtained. Other
low-energy parameters include the quark masses and the condensate. For these
we introduce a new tool in the next section: Ward–Takahashi identities.

11.1.2 Ward identities

In the path integral expression for the partition function

Z =
∫

D[ψ,ψ, U ] e−S[ψ,ψ,U ] =
∫

D[ψ′, ψ′, U ′] e−S[ψ′,ψ′,U ′], (11.13)
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the field variables ψ,ψ, U are integrated over. In the second step we have used
transformed variables ψ′,ψ′, U ′ for the path integral, which in general gives the
same result. The exceptions are anomalous transformations which affect the
integration measure. This strategy of comparing the path integrations using
transformed variables was already applied successfully in Chaps. 7 and 9. Ward
identities express the invariance of the partition function (and expectation
values) under such a transformation of the field variables.

Let us study the effect of a local, unitary transformation. The expectation
value of an arbitrary interpolator O is

〈0|O|0〉 =
1
Z

∫
D[ψ,ψ, U ] O[ψ,ψ, U ] e−S[ψ,ψ,U ] . (11.14)

We consider an infinitesimal symmetry transformation ψ → ψ + δψ, ψ →
ψ + δψ of the fermion fields in this path integral. The result has to be in-
variant under such a transformation of integration variables. In case of a
non-anomalous transformation the integration measure is invariant and one
gets (Ward-) identities of the form

0 = 〈0|δO|0〉 − 〈0|OδS|0〉 , (11.15)

where δO and δS denote the linear change of the operator O and the action
S under the transformation. The simplest case for O = 1 is

〈0|δS|0〉 = 0 , (11.16)

which leads to relations analogous to the classical Noether conservation laws.
For some transformations the functional interaction measure is not invariant.
This then gives rise to the so-called anomalous contributions (cf., Chaps. 7
and 9).

Let us first derive such relations in the familiar continuum form and for
O =1. Later we will point out differences to the lattice notation. We study the
transformation of the action (M = diag(mu,md) denotes the mass matrix in
flavor space)

∫
d4x ψ(γµDµ + M)ψ , Dµ = ∂µ + iAµ , (11.17)

with regard to infinitesimal SU(2) flavor transformations, corresponding to
the finite transformations (7.13), (7.14), (7.15), and (7.16). The linearized,
infinitesimal transformations may be written as

ψ(x) → ψ′(x) =
(
1 + i ε(x)λ

)
ψ(x) ,

ψ(x) → ψ′(x) = ψ(x)
(
1 + i ε(x) λ̂

)
,

(11.18)

where λ and λ̂ are products of matrices in Dirac and flavor spaces, e.g., λ = 1,
τa, γ5, γ5τa and λ̂ = −1, −τa, γ5, γ5τa. We assume that ε(x) is a function that
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vanishes smoothly outside some bounded region. This will be of importance
since we use partial integration and the boundary terms should not contribute.

To O(ε) the change of action (11.17) under such an infinitesimal transfor-
mation then is

δS = i
∫

d4x ψ
(
ελ̂ γµ∂µ + γµλ∂µε + iεAµ(λ̂ γµ + γµλ) + ε(λ̂M + Mλ)

)
ψ .

(11.19)
Here we study only transformations that have the property

λ̂γµ + γµλ = 0 , (11.20)

and since the gauge field is flavor and Dirac blind, we get rid of the term
involving Aµ. We have furthermore

∂µ (εψ) = (∂µε) ψ + ε ∂µψ , (11.21)

leading to

δS = i
∫

d4x
(
(∂µε(x)) ψγµλψ + ε(x)ψ

(
λ̂M + Mλ

)
ψ
)

= i
∫

d4x ε(x)
(
−∂µ

(
ψγµλψ

)
+ ψ

(
λ̂M + Mλ

)
ψ
)

.

(11.22)

We have used integration by part in the last step, assuming that the boundary
terms do not contribute, as guaranteed by our choice of ε(x). Since this choice
is arbitrary, the condition (11.16) has to hold for any x. From this the operator
identity results

∂µ

(
ψγµλψ

)
= ψ(λ̂M + Mλ)ψ . (11.23)

Then, depending on the choice of λ and λ̂, but respecting (11.20), we obtain
the relations

λ = 1, λ̂ = −1 ⇒ ∂µ

(
ψγµψ

)
= 0 , (11.24)

λ = τa, λ̂ = −τa ⇒ ∂µ(ψ γµ τ
a ψ) = ψ [M, τa]ψ , (11.25)

λ = λ̂ = γ5 ⇒ ∂µ(ψ γµ γ5 ψ) = 2ψM γ5 ψ (+anomaly) ,
(11.26)

λ = λ̂ = γ5 τ
a ⇒ ∂µ(ψ γµ γ5 τ

a ψ) = ψ {M, τa} γ5 ψ , (11.27)

where we used that the mass matrix M commutes with γ5: M γ5 = γ5 M.
With the shorter notation (11.1) and (11.3) for the flavor singlet and nonsin-
glet vector and axial vector currents and the pseudoscalar field the relations
then assume the form

∂µVµ = 0 , (11.28)

∂µV a
µ = 1

2ψ [M, τa]ψ , (11.29)

∂µAµ = ψM γ5 ψ (+anomaly) , (11.30)

∂µAa
µ = 1

2ψ {M, τa} γ5 ψ . (11.31)



11.1 Low-energy parameters 273

Equation (11.28) for the flavor singlet vector current is the conservation law for
the total baryon number. In the other three relations we find that the Noether
symmetry may be broken by the mass term. For mass-degenerate quarks one
has isospin symmetry and therefore [M, τa] = 0. Consequently (11.29) defines
the conservation of the flavor vector current. In (11.30), when written for the
quantized theory, the anomaly has to be added due to a noninvariance of the
integration measure in the functional integration (cf., Sects. 7.1, 7.3, and 9.4).

Equation (11.31) is called the nonsinglet axial Ward identity (AWI): The
divergence of the flavor nonsinglet axial vector current is related to the pseu-
doscalar field.

We stress again that due to (11.16) these relations hold as expectation
values. Since the choice of O is arbitrary we can choose the operator to be
nonvanishing and constant inside some compact, arbitrarily small space–time
region, and zero outside. Therefore (11.28), (11.29), (11.30), and (11.31) may
be considered to be valid locally. The relations are preserved under quanti-
zation and renormalization (up to the anomaly) and therefore hold for the
renormalized quantities as well.

For degenerate fermion masses m the AWI (11.31) has the form

∂µA(r)a
µ = 2m(r) P (r)a . (11.32)

This relation is useful in many aspects. Comparing it with (11.10) and eval-
uating it between the vacuum and the pion we find

M2
π Fπ 〈0|φ(r)a|π〉 = 〈0|∂µA(r)a

µ |π〉 = 2m(r)〈0|P (r)a|π〉 . (11.33)

This allows to determine the renormalized quark mass m(r) and the pion decay
constant from the asymptotic behavior of correlators of P (r)a and A(r)a

µ (see
Sect. 11.1.4).

Further exploitation of (11.32) leads to another interesting relation. We
utilize (11.22) for transformation (11.31) by multiplying it with a local pseu-
doscalar operator and taking its expectation value over the Grassmann fields.
Specifically we use (11.18) with

λ = λ̂ = γ5
1
2 (τ1 + iτ2) ,

O(0) = ψ(0) γ5
1
2 (τ1 − iτ2)ψ(0) = d(0) γ5 u(0) = P+(0) . (11.34)

This operator is just the pseudoscalar field. In the chiral limit M= 0 Eq.
(11.15) with (11.22) now leads to

−
∫

d4x 〈∂µA(r)−
µ (x)P+(0)〉 = 〈u(0)u(0) + d(0)d(0)〉 . (11.35)

Inserting on the left-hand side a complete set of states, the 2-point func-
tion is saturated by the pion and the expression becomes proportional to
〈P−(x)P+(0)〉. The left-hand side turns into
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− F 2
πM4

π

2m(r)

∫
d4x

〈
φ−(x)φ+(0)

〉
= −F 2

πM2
π

m(r)
, (11.36)

where we use that the integral is twice the momentum space propagator (p2 +
M2

π)−1 at vanishing momentum.
The right-hand side of (11.35) is the condensate Σ(r)

〈u(0)u(0) + d(0)d(0)〉 ≡ Nf Σ
(r) , (11.37)

where in our case Nf = 2.
We finally obtain a relation that holds for the renormalized quark mass

and the renormalized condensate Σ(r):

F 2
π M2

π = −m(r) Nf Σ
(r) . (11.38)

The pion decay constant Fπ and the pion mass Mπ do not depend on the
renormalization scheme; they are physical, measurable quantities. In our nor-
malization the experimental value of Fπ is close to 93 MeV.

Equation (11.38) is known as Gell–Mann–Oakes–Renner (GMOR) relation
due to the seminal paper [3], where the mechanism of symmetry breaking by
the quark mass term was discussed. Note that this equation has possible
correction terms of O(m2). This is the lowest order of a systematic expansion
leading to an effective field theory known as chiral perturbation theory [4, 5].

When one attempts to derive the lattice analogies [6, 7] to the continuum
identities one runs into a problem. For actions that are not chirally symmetric,
like the Wilson action, the chiral variation of the lattice action cannot be
expressed in terms of the axial current and density alone [6] and additional
terms appear. One then argues, however, that the correlation functions of the
renormalized lattice fields should converge to the corresponding continuum
ones. This allows to derive information from expectation values like (11.58)
for nonzero distances of propagation.

11.1.3 Naive currents and conserved currents on the lattice

We now change to the lattice formulation and consider the construction of lat-
tice currents corresponding to symmetry transformations of the form (11.18),
i.e.,

δψ(n) = i ε(n)λψ(n) , δψ(n) = iψ(n) ε(n) λ̂ . (11.39)

Under this transformation the action

S =
∑

n,m

ψ(n)D(U ;n|m)ψ(m) (11.40)

varies, with the linear term of the variation given by

δS = i
∑

n,m

ψ(n)
(
D(U ;n|m) ε(m)λ + ε(n) λ̂ D(U ;n|m)

)
ψ(m) . (11.41)
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Let us first consider Wilson fermions (5.51) and λ = τa and λ̂ = −τa. The
term O(ε) in the transformation of the Wilson action has to vanish for arbi-
trary ε(n). After shifting the index for the summation over the lattice sites
this can be cast into a local form. We end up with an equation equivalent
to (11.29), with the replacement of the continuum derivatives by a nearest
neighbor difference

4∑

µ=1

1
a

(
V a

µ (n + µ̂) − V a
µ (n)

)
=

1
2
ψ(n)[M, τa]ψ(n) , (11.42)

with the lattice vector current

V a
µ (n) =

1
4

4∑

µ=1

(
ψ(n + µ)(1 + γµ)Uµ(n)†τaψ(n) (11.43)

−ψ(n)(1− γµ)Uµ(n)τaψ(n + µ)
)

.

We can write (11.42) as

∆µV a
µ (n) = 1

2ψ(n)[M, τa]ψ(n) , (11.44)

where ∆µ is the forward lattice derivative ∆µf(n) ≡ (f(n + µ̂) − f(n)) /a.
This agrees (up to higher orders in the lattice spacing) with the corresponding
continuum expression (11.29). For u and d quarks with identical masses the
current is conserved like in the continuum.

For the axial transformations, however, this simple equivalence does not
work any more for fermion actions which violate chiral symmetry (like the
Wilson action). There are symmetry-breaking terms divergent with 1/a and it
is not possible to define an exactly conserved axial vector current for vanishing
quark masses.

In Chap. 7 we discussed Dirac operators which obey the Ginsparg–Wilson
relation and thus chiral symmetry on the lattice. The corresponding opera-
tors, e.g., the overlap operator, are more complicated. It therefore pays off
to consider the problem of constructing Noether currents for a general action
without specifying a particular form explicitly. For this we follow [8] and dis-
cuss as an example a simple n-dependent scalar transformation like in (11.18)
and (11.24) with λ = 1, λ̂ = −1.

The variation (11.41) assumes the form (k is a position index here)

δS = i a
∑

k,µ

(∆µε(k)) Jµ(k) = i
∑

k,µ

(ε(k + µ̂) − ε(k)) Jµ(k)

= i
∑

k,µ

ε(k) (Jµ(k − µ̂) − Jµ(k)) = −i a
∑

k,µ

ε(k)∆∗
µJµ(k) ,

(11.45)

where ∆µ and ∆∗
µ denote forward and backward lattice derivatives. In case

the action is invariant under such a change of variables, i.e., δS = 0, we could
identify Jµ(k) with the conserved Noether current on the lattice.
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For this end let us consider a transformation of each individual link
variable:

Uµ(n) → Ũµ(n) = U (α)
µ (n) ≡ eiαµ(n) Uµ(n) ≡ ei ε(n) Uµ(n) e−i ε(n+µ̂) ,

(11.46)
where αµ(n) = −∆µε(n). We have rewritten this transformation in order
to utilize the transformation properties of the Dirac operator under gauge
transformations, hence

D(U ;n|m) → D(Ũ ;n|m) = ei ε(n) D(U ;n|m) e−i ε(m) . (11.47)

Taking the difference between transformed and untransformed Dirac operators
we find at O(ε):

−
(
D(Ũ ;n|m) − D(U ;n|m)

)
= i (D(U ;n|m) ε(m) − ε(n)D(U ;n|m)) ,

(11.48)
where we have taken into account just the leading order in ε. This, however,
is the kernel of (11.41). Alternatively, we can determine this leading order
difference also by a derivative with regard to αµ:

−
(
D(Ũ ;n|m) − D(U ;n|m)

)
= −

∑

k,µ

αµ(k)




∂D

(
U (α)

µ (k);n|m
)

∂αµ(k)





α=0

=
∑

k,µ

(ε(k + µ̂) − ε(k))

(
∂D(U (α)

µ (k);n|m)
∂αµ(k)

)

α=0

. (11.49)

Comparison with (11.45) leads to the identification of the Noether current

Jµ(k) =
∑

n,m

ψ(n)Kµ(k;n|m)ψ(m) , with

Kµ(k;n|m) ≡ −i




∂D

(
U (α)

µ (k);n|m
)

∂αµ(k)





α=0

.
(11.50)

We find that if we imagine the Dirac operator as a sum over paths connecting
n with m, then all paths which run through the link Uµ(k) contribute to
Jµ(k). From the construction the gauge invariance of Jµ(k) is obvious. In
practical applications the derivatives have to be performed numerically by
taking differences. Applying this construction to the Wilson Dirac operator
we recover the simple local currents as, e.g., in (11.43).

For chirally symmetric actions it is possible to construct conserved and
covariantly transforming vector currents as well as covariant scalar densities.
These then obey Ward identities like in the continuum.

Following the strategy outlined in our example, in [8, 9] chiral covariant
and conserved currents have been constructed for general, exactly
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chiral-invariant actions like the overlap action. We refer to the original papers
for the explicit derivation and only quote the results. With the abbreviation

γ̂5 = γ5(1− D), (11.51)

we have

V a
µ (k) =

1
4

∑

n,m

ψ(n)

(
Kµ(k;n|m) − γ5

∑

j

Kµ(k;n|j) (γ̂5)jm

)
τa ψ(m) ,

Aa
µ(k) =

1
4

∑

n,m

ψ(n)

(
− γ5Kµ(k;n|m) +

∑

j

Kµ(k;n|j) (γ̂5)jm

)
τa ψ(m) ,

Sa(k) =
1
4

∑

n,m

ψ(n)

(
δnk

(
1− 1

2D
)
km

+
1
2

∑

j

(
1− 1

2D
)
nj

(
δjkδmk + (γ̂5)jk (γ̂5)km

))
τa ψ(m) ,

P a(k) =
1
4

∑

n,m

ψ(n)

(
γ5δnk

(
1− 1

2D
)
km

+
1
2

∑

j

(
1− 1

2D
)
nj

(
(γ̂5)jk δmk + δjk (γ̂5)km

))
τa ψ(m) .

(11.52)
These conserved currents and equivalently constructed scalar and pseudoscalar
densities transform covariantly under the chiral transformations, like in the
continuum. For conserved vector currents the renormalization is trivial (the
charge is conserved and the renormalization constants obey ZA = ZV = 1).
An important advantage is that the currents and densities (dimension-3 op-
erators) are automatically O(a) improved and do not mix with dimension-4
or dimension-3 operators, respectively.

Since the implementation of prescription (11.50) is rather involved, the
simpler expressions

Ṽ a
µ (k) =

1
2

∑

m

ψ(k)γµ

(
1− 1

2D
)
km

τa ψ(m) ,

Ãa
µ(k) =

1
2

∑

m

ψ(k)γµγ5

(
1− 1

2D
)
km

τa ψ(m) ,

S̃a(k) =
1
2

∑

m

ψ(k)
(
1− 1

2D
)
km

τa ψ(m) ,

P̃ a(k) =
1
2

∑

m

ψ(k)γ5

(
1− 1

2D
)
km

τa ψ(m)

(11.53)

have been used. They are also covariant but not conserved and thus not related
by Ward identities [8]. For direct constructions based on Ginsparg–Wilson
fermions see also [10, 11].

In correlation functions over distances larger than the range of the Dirac
operator the covariant densities in (11.52) can be replaced by the even simpler,
point-like expressions
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Sa(k) ≈ 1
2

1
1 − m/2

ψ(k) τa ψ(k) ,

P a(k) ≈ 1
2

1
(1 − m/2)(1 − m2/4)

ψ(k) γ5 τ
a ψ(k) .

(11.54)

This comes about since the propagator involves the inverse massive Dirac
operator D−1

m and from (7.41) and (7.42) we know that

1− 1
2D =

1
1 − m/2

(
1− 1

2Dm

)
. (11.55)

The insertions 1− 1
2D in (11.53) thus can be expressed in terms of the massive

Dirac operator Dm. When considering correlation functions of the interpola-
tors (11.53) the insertions give rise to products DmD−1

m which just contribute
locally (“contact term”) and may be omitted [8].

In the continuum limit the currents renormalize multiplicatively with fac-
tors like ZV and ZA and we will discuss the determination of these factors in
Sect. 11.2.

11.1.4 Low-energy parameters from correlation functions

In the last section we have shown that the continuum identities for correlation
functions may be translated to the lattice, although the identification of the
currents and densities on the lattice is not straightforward. We can expect
that the asymptotic behavior of correlation functions may be compared. Thus
we may utilize equations like (11.12) to determine low-energy constants from
the asymptotic (long time distance) behavior of certain correlation functions
and ratios thereof.

The renormalized quark mass may be determined utilizing the axial Ward
identities (11.31), (11.33) and considering the (large t) asymptotic behavior of

1
2
〈0|∂tA

−(r)
4 (p = 0, t)X(0)|0〉

〈0|P−(r)(p = 0, t)X(0)|0〉
=

1
2

ZA

ZP

〈0|∂tA
−
4 (p = 0, t)X(0)|0〉

〈0|P−(p = 0, t)X(0)|0〉 ∼ m(r) .

(11.56)
For X one chooses an interpolator coupling to the pion and often one takes
X =P . Numerator and denominator are both asymptotically dominated by
the pion intermediate state and the asymptotic t-dependence cancels. In the
calculations one can identify a plateau as soon as the asymptotic behavior has
set in. In this relation one needs to know the renormalization constants ZA

and ZP relating the lattice interpolators with the continuum normalization.
These can be determined separately, as will be discussed later.

Neglecting the renormalization constants one often just determines the
asymptotic ratio of the unrenormalized correlators:

1
2
〈0|∂tA

−
4 (p = 0, t)X(0)|0〉

〈0|P−(p = 0, t)X(0)|0〉 ∼ mAWI . (11.57)
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Due to its origin this ratio is called the AWI mass mAWI or PCAC mass. We
have already used (11.57) as a tool for determining the coefficients csw and cA

in the Symanzik improvement program in Sect. 9.1.4.
The quark mass of the lattice action may undergo two renormalizations.

In case the action is not chirally symmetric there may be an additive renor-
malization called residual mass mres and mAWI = mbare +mres. We then have
m(r) = (ZA/ZP )mAWI. In relation to, e.g., the continuum MS scheme one has
a multiplicative renormalization factor m(r) = Zm m. For chirally symmetric
actions Zm ZP = 1 and thus the bare mass in lattice units is m = ZA mAWI.

The AWI mass vanishes at the points in the space of couplings, where
chiral symmetry holds. This is particularly useful in cases with additive mass
renormalization, since it allows to identify the residual mass (see below). For
the Wilson action one identifies the critical value of the hopping parameter
κc(β) with its help: It is defined as the value where mAWI vanishes and the
pions are massless (see also Sect. 9.1.4).

The pion decay constant may be obtained, e.g., from the axial current
correlation function (11.12):

Z2
A 〈A+

4 (p = 0, t)A−
4 (0) 〉 ∼ Mπ F 2

π√
ω

e−Mπ t . (11.58)

Due to (11.33) we also find

〈0|P+(p = 0, t)P−(0)|0〉 ∼ A√
ω

e−Mπ t with A =
M3

π F 2
π

4m(r)2Z2
P

. (11.59)

From the coefficient to the asymptotic behavior we get

Fπ = 2ZP m(r)

√
A

M3
π

= 2ZA mAWI

√
A

M3
π

. (11.60)

The GMOR equation (11.38) may be used to compute the quark conden-
sate, once Fπ, Mπ, and m(r) are known. One may also use correlation functions
like

ZA ZP |〈0|A+
4 (p = 0, t)P−(0)|0〉| ∼ |Σ(r)|√

ω
e−Mπt (11.61)

for its determination (cf. [12] for more such relations).

11.2 Renormalization

11.2.1 Why do we need renormalization?

When quantizing a field theory one has to regularize it, and the lattice formu-
lation is one possible ultraviolet regulator. Identification of computed quan-
tities with physical observables then completes the renormalization process.
Different regulators and actions require different renormalization parameters.
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Some observables like hadron masses can be measured directly as dimen-
sionless numbers amphys from the exponential decay of the correlation func-
tions. By comparing one such number with the physical mass mphys of that
particle one may determine the lattice spacing a and establish the scale (see
Sect. 6.3). Other quantities like decay constants or form factors involve fields
and their relationship to experiments and continuum normalization is more
involved.

Matrix elements and low-energy parameters like quark masses or the con-
densate play an important role in QCD phenomenology. However, their values
depend on the definitions in some renormalization scheme. Since one wants
to compare with physical, experimentally measured quantities one has to re-
late these to the parameters of the underlying formulation of the quantized
theory. For that purpose one has to determine the scaling properties, i.e., the
dependence on the scale a, of the observables and their behavior under renor-
malization. Many quantities are intrinsically scale dependent and are even
divergent when the cutoff parameter a is removed. We can distinguish the
following scenarios:

• Finite operators, e.g., vector currents and axial vector currents or the ratios
of scalar and pseudoscalar densities: The multiplicative renormalization
factors ZV , ZA and the ratio ZS/ZP assume finite values for vanishing
regularization parameter a, thus they should be scale independent. For
conserved currents and chirally symmetric actions ZV =ZA = 1. Depend-
ing on the Dirac operator, it may be complicated to use the conserved
currents (see Sect. 11.1.3) and one therefore relies on simpler, e.g., point-
like currents where the Z-factors are not known a priori.

• Logarithmically divergent operators (which are, e.g., scalar and pseu-
doscalar densities or flavor ∆F = 2 changing 4-fermion operators) are
scale dependent.

• Power divergent operators: These occur in regularizations with intrinsic
mass scale like in the lattice regularizations. Then mixing with lower
dimensional operators becomes possible, leading to power divergences
O(1/an) [13]. Examples are O(1/m) terms in heavy quark effective the-
ory (HQET) discussed in Sect. 10.4.

In the regularization some symmetries of the original theory are lost. In
the lattice approach these are, e.g., the continuous space–time transformations
and (for some actions) the chiral symmetry. Exact GW fermions are protected
by their chiral symmetry and renormalization of operators constructed from
them is simpler than for, e.g., Wilson fermions. Chiral symmetry implies sev-
eral relations between renormalization constants, e.g., ZA = ZV and ZS = ZP .

In order to compute renormalization constants nonperturbatively on the
lattice one needs a renormalization scheme which can be implemented in lat-
tice Monte Carlo simulations and in continuum perturbation theory. The latter
property is necessary to enable the conversion of the lattice results to the con-
tinuum scheme. The most favored continuum scheme is the modified minimal
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subtraction MS scheme. In such a mass-independent scheme the renormaliza-
tion factors depend only on a normalization mass µ and the coupling constant,
but not on quark masses.

11.2.2 Renormalization with the Rome–Southampton method

Since one compares the lattice results with results of the continuum one could
utilize lattice perturbation theory (see [13] and references therein). This has
been done but in many cases the convergence is too bad to lead to reliable
numbers. One therefore often relies on nonperturbative methods [14].

The idea is to compare bare lattice correlation functions, couplings, and
masses determined in nonperturbative lattice calculations with quantities
in the so-called Regularization-independent (RI) scheme (often also called
RI/MOM scheme). The connection between the RI quantities and those de-
fined in the MS scheme can then be done in continuum perturbation theory
[15].

As an example we discuss the renormalization factors of quark bilinear
operators. To be more explicit, let us consider the local, flavor nonsinglet
quark field bilinear operators

OΓ ≡ uΓ d . (11.62)

Here Γ denotes a Clifford algebra matrix. According to their Lorentz sym-
metry we denote the five types of Γ by S, V, A, T, and P corresponding to
scalar, vector, axial vector, tensor, and pseudoscalar (corresponding to 1, γµ,
γµγ5, i

2 [γµ, γν ], and γ5).
One studies expectation values 〈p | OΓ | p〉 (i.e., at zero momentum trans-

fer) of the bilinear quark operators between quark fields |p〉 at a specific mo-
mentum value p2 = µ2 and matches them to the corresponding tree-level
matrix element:

ZΓ 〈p | OΓ | p〉
∣∣∣
p2=µ2

= 〈p | OΓ | p〉0
∣∣∣
p2=µ2

. (11.63)

The renormalization constant ZΓ is the proportionality factor between the
interacting and the free case.

This procedure is expected to work in a window

Λ2
QCD + µ2 + 1/a2 , (11.64)

where discretization effects can be neglected, because the renormalization
scale µ is small compared with the lattice cutoff 1/a. Then (few-loop) contin-
uum perturbation theory can be used to connect different schemes, because µ
is much larger than the QCD scale parameter ΛQCD. For comparing with the
MS scheme a typical value is µ = 2GeV. In most calculations one has (aµ) ≈ 1
(or even somewhat larger) and the upper limit is not strictly obeyed. On the
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other hand, the limit also depends on the scaling properties of the actions
involved.

Since (11.63) is gauge variant, one has to work in a fixed gauge and must
compare the gauge dependent lattice matrix elements with the continuum
results in the same gauge. Landau gauge fixing is a suitable choice, but one has
to keep in mind that the Gribov copies uncertainty could spoil the comparison.
In the lattice calculations one finds little, if any, signal of such an effect [16–18].

We summarize the method following [14] in the modification of [19]. Note
that in (11.63) one compares matrices in color and Dirac spaces. Taking the
trace one obtains for the renormalization condition

ZΓ
1
12

tr
[
〈p | OΓ | p〉 〈p | OΓ | p〉−1

0

] ∣∣∣
p2=µ2

= 1 . (11.65)

The matrix element
〈p | OΓ | p〉 =

1
Zq

ΛΓ (p) (11.66)

is proportional to the amputated Green function

ΛΓ (p) = S−1(p) GΓ (p) S−1(p) , (11.67)

and Zq is the quark field renormalization constant to be discussed below. The
Green function GΓ (p) is determined as the expectation value:

GΓ (p)αβ
a b

=
1
V

∑

x,y

e−ip(x−y)

〈
uα

a
(x)

∑

z

OΓ (z) dβ
b
(y)

〉
. (11.68)

The indices α, β and a, b run over Dirac and color indices, respectively, and
V denotes the lattice volume. The quark propagator is

Sαβ
a b

(x, y) = 〈uα
a
(x)u β

b
(y)〉 = 〈dα

a
(x) dβ

b
(y)〉 (11.69)

(assuming that u and d have equal masses and using the Landau gauge for
the expectation value).

So we have to compute GΓ (p) and S(p). This is done in the following way.
For the quark propagator S(n) evaluated on a single gauge configuration n we
define

S(n)(x|p) =
∑

y

eipy S(n)(x, y) . (11.70)

Taking into account γ5-hermiticity of the propagator we may, for quark bilin-
ear operators OΓ as defined in (11.62), rewrite GΓ (p) in terms of the quantities
(11.70):

GΓ (p) =
1
V

∑

x,y,z

e−ip(x−y) 〈u(x)u(z)Γ d(z) d(y)〉 (11.71)

≈ 1
V N

N∑

n=1

∑

z

γ5 S(n)(z|p)† γ5 Γ S(n)(z|p) , (11.72)
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where we approximate the expectation value by averaging over N gauge con-
figurations. Similarly we find the quark propagator in momentum space

S(p) ≈ 1
V N

N∑

n=1

∑

x

e−ipx S(n)(x|p) . (11.73)

S(n)(y|p) is computed by solving the lattice Dirac equation (D denotes the
Dirac operator) ∑

y

D(z, y)S(n)(y|p) = eipz (11.74)

with a momentum source (cf. [19]). This has the disadvantage that one has to
determine the quark propagators for several momentum sources, whereas in
the original method [14] one uses point sources (i.e., taking into account just
z = 0 instead of summing over all z) and projects the quark sink to the desired
momentum values. However, using momentum sources has the big advantage
of a significantly better signal.

The quark field renormalization constant is obtained by comparing the
quark propagator to the free (lattice) propagator. Using the so-called RI′
scheme we take

Z ′
q =

1
12

tr
[
S−1(p)

1R(p) − iγνvν(p)
R(p)2 +

∑
ν vν(p)2

]∣∣∣∣
p2=µ2

. (11.75)

The RI′ scheme differs from the RI scheme only by the definition of the quark
field renormalization constant. In (11.75), R and vν are the scalar and vector
terms appearing in the free Dirac operator, which in momentum space reads
D(p) = i γν vν(p) + 1R(p). Using Fourier transformation one can compute R
and vν from the definition of D. They are normalized such that one finds

vν(p) = i pν + O
(
a p2

)
and R(p) = O

(
a p2

)
. (11.76)

Landau gauge fixing ∂νAν =0 is implemented as discussed in [17, 20] by it-
eratively minimizing a functional of the link variables with stochastic overre-
laxation [21] (cf., Sect. 3.2.2). As is well known this type of gauge fixing still
allows for Gribov copies corresponding to further local minima. This gives
rise to an uncertainty which one has to check, e.g., by studying the effect of
random gauge transformations.

It is easy to check that at tree level one finds 〈p | OΓ | p〉0 = Γ . Putting
things together we obtain the final formula for ZΓ in the RI′ scheme:

ZRI′

Γ =
12Z ′

q

tr[ΛΓ (p)Γ−1 ]

∣∣∣∣
p2=µ2

. (11.77)

For Γ = γν , γνγ5 averaging over the index ν under the trace is implied.
The connection between different renormalization schemes is established

using continuum perturbation theory. In the two schemes MS and RI′ the
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renormalization factors are related, and we obtain the final result for the
lattice numbers ZRI′

Γ as

ZMS
Γ (µ2) = RΓ (µ2)ZRI′

Γ (µ2) , (11.78)

where the ratio RΓ (µ2) may be computed in perturbation theory. Both,
ZRI′

Γ (µ2) and ZMS
Γ (µ2) may be divergent in the continuum limit, the ratio

stays finite, though.
Conversion factors between RI, RI′, and MS schemes have been deter-

mined in Landau gauge and 3-loop order in [15, 22, 23]. Integrating the renor-
malization group differential equations one can also define scale-independent
quantities ZRGI (RGI = renormalization group invariant) [19, 24].

Here we have only discussed the simple case of renormalizing quark bi-
linears of the form (11.62). Operators with derivatives, as they are used for
matrix elements discussed in Sect. 11.4, may be treated with similar methods.

In the RI scheme one has to extrapolate to the chiral limit for compar-
ison with the mass-independent MS scheme. An alternative approach is the
Schrödinger functional method (see Sect. 9.1), where one may work directly
at the chiral point [13, 25].

11.3 Hadronic decays and scattering

11.3.1 Threshold region

In finite volumes the observables show finite size effects. Let us first discuss the
propagation of a single hadron. We assume that the time extent is sufficiently
large and thus not important for finite size effects. We also assume periodic
boundary conditions for the spatial directions of the volume. Then there are
two ways the single particle propagator is affected by the finite volume: On
the one hand the propagator between two points separated by some distance
in Euclidean time is actually a sum over propagators between the source and
all spatial mirror images. On the other hand mass renormalizing interactions
(like loops) will also have paths running around a periodic spatial direction
before coming back to the vertex, as in Fig. 11.1. One could interpret this as
a squeezing effect of the finite box on the virtual polarization cloud of the
propagating particle. The leading effect comes from the lightest interacting
particles in the system, i.e., the pions in QCD. The control parameter is the
ratio of the box size L to the light particle correlation length, or, equivalently,
the product MπL.

This has been discussed in [26] for the continuum quantum field theory of
hadrons. In QCD we have quarks and gluons as the basic objects. However,
due to confinement the quark loops are suppressed and the leading effect is
expected to be due to pions. Thus the derivation should be applicable to QCD.

A single hadron does not change its momentum when emitting and ab-
sorbing a pion, as in Fig. 11.1. Thus the interaction is related to the forward
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Fig. 11.1. Propagation of a pion. Left : free (above) and with interaction loop (be-
low). Right : additional terms in a finite, periodic spatial box, where the pion also
can run around the torus due to periodic boundary conditions

scattering amplitude. If, in an approximation, this is just a constant α, then
the mass change is proportional to the (divergent) loop contribution

m2 = m2
0 + α

∫
d4p

(2π)4
Ĝ(p) = m2

0 + αG(0) , (11.79)

where Ĝ(p) is the propagator in momentum space. The integral gives the real
space propagator at the origin G(0), as made explicit in the second step of
(11.79). The divergence is absorbed in the definition of the bare mass (renor-
malization).

We now consider a finite, periodic, spatial box of size L3 and temporal
extent large enough to neglect modifications due to its finiteness. In such a
finite volume we have to replace the real space propagator by a sum

G(x) ⇒
∑

s∈Z3

G(x + Ls) , (11.80)

where s ∈ Z3 gives the shift between the original lattice and its mirror images.
The mass difference between finite and infinite box due to the interaction
term, i.e., due to the contributions from propagation from the mirror images,
is given by

m2(L) − m2 = α
∑

s %=0

G(Ls) . (11.81)

In order to estimate these contributions we now need the large distance be-
havior of the free boson propagator. There are various ways to determine the
Fourier transform

G(x) =
∫

d4p

(2π)4
eipx

p2 + m2
∼ m2

√
8π

(4π)2
e−m |x|

(m |x|)3/2
. (11.82)
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We therefore can expect a leading size dependence ∝ exp(−mL)/L3/2. The
coefficient can be determined, e.g., from ChPT [27–29].

Lüscher [26] sums all orders of perturbation theory of the loop contribu-
tions on a periodic, finite lattice and obtains the expression

m(L) − m = − 3
(4π)2

1
mL

∫ ∞

−∞
dy e−

√
y2+m2LF (iy) + O(e−mL) , (11.83)

where the second term is suppressed since m >
√

3/2 m can be shown. F (iy)
denotes the Xπ → Xπ forward-scattering amplitude F (ν = s− u) = A(s, t =
0, u), analytically continued to imaginary argument, where s, t, and u are the
relativistically invariant Mandelstam variables.

We will not reproduce the derivation here but just make the result plausi-
ble. For this we integrate (11.82) by choosing x along the time axis and write

G(x) =
∫ ∞

−∞

dE

2π
ei E x

∫ ∞

−∞

d3p

(2π)3
1

E2 + p2 + m2

=
∫ ∞

−∞

dE

2π
ei E x

∫ ∞

0

dy

2π2

y2

E2 + y2 + m2

(11.84)

(here y = |p|). The integral over E may be solved using Cauchy’s theorem,
i.e., completing the contour by a half-circle at infinity and picking up the pole
at E = i

√
y2 + m2 in the upper half-plane,

G(x) =
1

4π2

∫ ∞

0
dy e−

√
y2+m2 x y2

√
y2 + m2

= − 1
4π2

∫ ∞

0
dp

p

x

d

dp

(
e−

√
p2+m2 x

)
=

1
8π2x

∫ ∞

−∞
dp e−

√
p2+m2 x .

(11.85)
In the second step we did a partial integration and then doubled the integra-
tion interval to get a form resembling (11.83). We now add up just the leading
contributions of the sum (11.81) due to the six neighbor images and get

m2(L) − m2 =
6α

8π2L

∫ ∞

−∞
dp e−

√
p2+m2 L , (11.86)

and from this

m(L) − m ≈ m2(L) − m2

2m
= − 3

(4π)2
(−2α)
mL

∫ ∞

−∞
dp e−

√
p2+m2 L . (11.87)

This is just (11.82) with the scattering amplitude replaced by the constant
coupling F → −2α. Thus we reproduce the simple leading behavior discussed
earlier.

In the second paper of the series [30] Lüscher then relates the energy
spectrum of two stable particles (at rest) in a finite, periodic box to their
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elastic scattering amplitude. Whereas the finite volume effects for the single
particle are exponentially small, now the interaction between the two particles
leads to only polynomial suppression O(1/L3). The physical picture is that the
localized particles need to be close to each other to interact and the probability
to find one particle close to another is inversely proportional to the spatial
volume.

Near threshold the scattering amplitude is dominated by the s-wave scat-
tering length a0 = limk→0 δ0(k)/k (where k is the 2-particle momentum and
δ0 the s-wave scattering phase shift). For a 2-particle system the expansion of
the ground state energy in 1/L is

W = 2Mπ − 4πa0

MπL3

(
1 + c1

a0

L
+ c2

a2
0

L2
+ O

(
1
L3

))
. (11.88)

The coefficients c1 = −2.837297 and c2 =6.375183 depend on the lattice shape
and are related to the generalized zeta function of the momentum lattice.
Similar relations for nonzero momenta involve other phase shifts δl(k) as well.

Relation (11.88) can be generalized to particles with unequal mass and
nonzero total momentum. The leading term always is proportional to the
inverse volume [30].

11.3.2 Beyond the threshold region

Asymptotically only stable states can be observed. Thus in full QCD simu-
lations resonances usually will have to be identified by their impact on inter-
mediate states. Utilizing equations like (11.88), Lüscher [26, 30–32] derived a
relation between the two-particle eigenstates energies on the finite lattice and
the scattering phase shift, valid below the inelastic threshold.

Let us discuss the idea in a simple situation. Consider the scattering of
two bosons in a 1+1 dimensional system of finite spatial extension L, but
infinite time extension. This situation is most conveniently described by using
a wave function for the relative motion of the scattering partners. The basic
assumption is that the interaction range is finite and smaller than L. Thus
the wave function outside the interaction range is a plane wave. The effect of
the interaction is taken into account by a momentum-dependent phase shift
δ(k), acquired in the interaction region as illustrated in Fig. 11.2.

Imposing periodic boundary conditions, the matching of the plane wave
with momentum k at x = L implies

ei k L+2 i δ(k) = ei k 0 = 1 . (11.89)

This gives rise to the quantization condition for the relative momenta kn:

kn L + 2 δ(kn) = 2nπ , (11.90)

where n is an integer. For vanishing δ one recovers the free case where the
momenta are kn = 2π n/L. For the interacting situation nontrivial momenta
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Fig. 11.2. This figure illustrates the behavior of the wave function: Outside the
interaction region it is an unperturbed plane wave which picks up an extra phase
shift in the interaction region (indicated by the arrow)

may be deduced from (11.90). If the functional form δ(kn) were known, one
could use this relation to find the quantized values of the momentum in this
finite volume. On the other hand, given the momentum spectrum from some
measurement, (11.90) allows the determination of the phase shift δ(kn) for
each kn.

The momenta can be obtained from the energy values of the two parti-
cle states which are accessible in the simulation. For given L one computes
the discrete levels W0,W1,W2, . . . and from these the values of kn using the
dispersion relation

Wn = 2
√

m2 + k2
n . (11.91)

The technical problem lies in the precise determination of the single-particle
mass and of the energy levels Wn.

For the determination of the energy spectrum one has to use techniques
like the variational method (discussed in Sect. 6.3.3) considering correlation
functions of a sufficiently large number of interpolators with the correct quan-
tum numbers, capable of representing the space of scattering states [33, 34],
including the coupled single-particle channels. Usually several of the lowest
energy eigenmodes can be determined with sufficient reliability. Varying the
spatial size L of the system allows one to cover different values of the momen-
tum. In [34] a simple 2D system was studied which couples a heavier and two
lighter bosons on the lattice, with mass and coupling parameters allowing for a
decay like in the ρ → ππ system. Figure 11.3 demonstrates the expected phe-
nomenon of level-crossing avoidance, which leads to a resonating phase shift.

One has to respect carefully the limitations of the approach: The interac-
tion region and the single-particle correlation length ought to be smaller than
the spatial volume, in particular mL. 1. The relation is applicable only be-
low the first inelastic threshold. Polarization effects due to virtual particles
running around the torus should be under control. Lattice artifacts will turn
up for large values of k.

In the physical 4D situation the relationship between phase shift, lattice
size, and momentum becomes somewhat more complicated:

δ(k) = φ

(
kL

2π

)
modπ with tan(−φ(q)) =

qπ3/2

Z00(1; q2)
, φ(0) = 0 .

(11.92)



11.4 Matrix elements 289

10 30 50

0.5

1.0
(a)

L

W

10 30 50

L

(b)

0.0 1.0 2.0

–1.0

0.0

1.0 (c)

δ

k/m

Fig. 11.3. Demonstration of the relation between scattering phase shifts and the
finite volume energy spectrum in a simple toy model coupling a heavy particle to
two light ones (figures from [34]). We show the energy levels observed without (a)
and with (b) interaction coupling the single heavy particle to the two light ones. The
horizontal dashed lines in (a) and (b) indicate the 2- and 4-particle thresholds, the
horizontal full line in (a) denotes the single-(heavy)particle mass. Figure (c) shows
the resulting resonance phase shift for (b); the vertical dashed line denotes the 4-
particle threshold. For the 2D model the phase shift starts at −π/2 (no interaction).
In all plots the symbols show the numerical data and the full curves represent models
for the free (a) or resonating interacting case (b), (c)

Here Z00 denotes the Riemann zeta function. A 4D bosonic model has been
studied in [35, 36] and a quenched QCD simulation in [37].

The ρ-meson is the resonance in the ππ p-wave channel and therefore the
pions in the decay have nonzero momentum. In [38] (cf., also [39]) the relation
was extended to nonrest frame situations. This has the advantage that on the
same set of configurations both, zero and nonzero momentum cases, can be
studied simultaneously, resulting in more data points. Smaller volumes and
a smaller volume range can be utilized. A dynamical fermion study of the
ρ-decay has used this method [40, 41].

In [42] the decay is studied by analyzing the energy levels in a situation
when the ρ mass lies below the two-pion mass. From the NT -dependence the
transition amplitude ρ → ππ was determined, and from this the effective
coupling.

11.4 Matrix elements

When exploring the internal structure of a hadron one wants to know the spa-
tial distribution of charge, matter, and spin. One also needs to know, however,
the momentum distribution. Both quantities are intrinsically nonperturbative
and therefore a challenge for lattice QCD.

The spatial distribution may be probed by elastic scattering processes,
giving rise to the concept of form factors and charge distributions. The mo-
mentum distribution can be explored experimentally in hard (high-energy)
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Fig. 11.4. Matrix elements of operators (squares) between mesonic states (circles)

collisions like deep-inelastic scattering or Drell–Yan processes. In the parton
model [43] quarks, antiquarks, and gluons are all partons and considered in
a hadron at very high momentum. The point-like probes identify the parton
probability distributions to find the partons in the infinite momentum frame
with some fraction x of the hadron’s longitudinal momentum and a momen-
tum transfer Q2.

A quark distribution function in a hadron h is defined through a matrix
element in continuum light-cone notation

q(x) =
1

2p+

∫
dλ
2π

eiλx〈h(p)|Ψ(0)γ+Ψ(λn)|h(p)〉 , (11.93)

with p+ = (p0 + p3)/
√

2, nµ = (1, 0, 0,−1) and n · p = 1. The quark field Ψ is
connected from its position to infinity with a gauge transporter to make the
expression gauge-invariant.

The generalized parton distributions (GPDs) are an extension of this con-
cept, introducing further variables like the spin and the transverse momentum
and correlating spatial and momentum values. Via this extension one hopes
to describe also scattering processes at lower energies [44, 45].

Wilson’s operator product expansion (OPE) [46–49] relates the light-cone
matrix elements (11.93) or GPDs to matrix elements of local operators
〈h|Oi|h′〉. One also needs renormalization factors ZOi(aµ) converting the lat-
tice result to, e.g., the MS scheme. The local operators can be simple quark
bilinears like uγνd (for form factors), they may include derivatives like uγνDµd
(for GPDs), or more quarks like in sγµu uγµd (for weak interaction pro-
cesses). Figure 11.4 gives examples of the matrix elements that one has to
determine.

11.4.1 Pion form factor

Meson form factors are among the simplest matrix elements. As a prototype
example we discuss the electromagnetic form factor of the pion F (π) that
describes the coupling of the pion to the photon. It is defined by the matrix
element

〈π+(pf )|Vµ |π+(pi)〉cont = (pf + pi)µ F (π)(Q2) , (11.94)

where pi and pf are the 4-momenta of the initial and final pions, Q2 = (pf −
pi)2 ≡ −t is the space-like invariant momentum transfer squared, and

Vµ =
2
3

u γµ u − 1
3

d γµ d (11.95)
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Fig. 11.5. Schematic diagram for the matrix element (11.98)

is the isovector vector current normalized to unit electric charge at zero mo-
mentum transfer (i.e., the on-shell photon coupling): F (π)(0) = 1. Its space-
like values are determined from experiment.

The connection to the continuum normalization gives another factor,

〈π+(pf )|Vµ |π+(pi)〉latt =
1

2
√

EiEf
〈π+(pf )|Vµ |π+(pi)〉cont . (11.96)

The pion form factor is an analytic function of t. Its space-like values can be
determined from the values on the boundary of its analyticity domain, i.e., the
cut along the positive real t-axis, the time-like region. Although the cut starts
at t = 4m2

e, significant contributions only come from the hadronic resonance
region, starting with the two-pion threshold at 4M2

π . Due to unitarity along
the first part of the cut, until inelastic channels become important, the phase
shift is essentially the p-wave phase shift of the elastic two-pion channel. That
region is dominated by the ρ-meson resonance. This feature has been exploited
by various dispersion relation representations [50–53].

Although there are further inelastic contributions from the four-pion chan-
nel, these remain tiny until the πω channel opens. There is also a small con-
tribution from the isoscalar ω coupling through higher-order electromagnetic
interactions. All these contributions show small effects on the near space-like
region. The dominance of the vector meson motivates a simple pole parame-
terization for this region.

The mean charge radius squared 〈r2〉V is defined through

F (π)(Q2) = 1 − 1
6
〈r2〉V Q2 + O

(
Q4
)

⇒ 〈r2〉V ≡ 6 dF (π)(t)/dt
∣∣
t=0

.

(11.97)
The current PDG average for its value is 0.45(1) fm2 [2].

With present lattice tools one studies the pion form factor in the space-like
region. For this we need to evaluate off-forward matrix elements (preferably
at several transferred momenta), i.e., the expectation values of

tr

[
∑

y; y0=τ

eiq·yS(0, y) O(y)
∑

x; x0=t

e−ip·xS(y, x)γ5S(x, 0)γ5

]
, (11.98)

where S(y, x) is the quark propagator from x to y and O(y) denotes the
operator inserted at y. We use the notations p ≡ pf , r ≡ pi and denote
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the momentum transfer as q = p− r (cf. Fig. 11.5). Ideally the time distances
between source and operator insertion and between the operator insertion and
the sink are long enough, such that the higher excitations in the pion channel
may be disregarded and the pion ground state dominates the insertion region.
Smearing of source and sink operators also helps to get a better ground state
signal.

In evaluating matrix elements one has to compute expectation values of
combinations of quark propagators as in Figs. 11.4 and 11.5. Each calculation
of a quark propagator starting from a given source requires an inversion of the
Dirac operator and thus a significant amount of computer time. One therefore
wants to reduce the number of propagator calculations. This is achieved by
using the so-called sequential source method [54, 55]. We first calculate the
quark propagator from the source at the origin to all other points of the
lattice as discussed in Chap. 6. This provides us with both the propagator
from the source origin to x and, due to the γ5-hermiticity property, also from
y to the origin. All we need is another propagator from x to y. The matrix
element is then written as

tr

[
∑

y;y0=τ

eiq·y S(0, y) O(y) Σ(y, 0) γ5

]
, (11.99)

where the sequential propagator is defined as

Σ(y, 0) =
∑

x;x0=t

e−ip·x S(y, x) γ5 S(x, 0) . (11.100)

It can be easily computed by an additional inversion of the Dirac operator D
for each choice of the final momentum p:

∑

y

D(z, y)Σ(y, 0) = e−ip·z γ5 S(z, 0)
∣∣∣
z0=t

. (11.101)

Changing the properties of the sink requires the computation of new sequential
propagators, and so simulating several final momenta, different field interpo-
lators, or a different smearing for the sink rapidly becomes rather expensive.
For this reason one often works only at one value of the final momentum.
This approach then allows not only the determination of the mentioned ma-
trix element but, with no more effort, also the consideration of other operator
insertions, e.g., for the scalar form factor.

One extracts the physical matrix elements by computing ratios of 3-point
and 2-point correlators. To see this, let us look at the 3-point correlator for in-
and outgoing pseudoscalar interpolating field operators P and an operator O
at insertion time τ . At τ we insert a complete set of states. For large enough
separation distance this can be saturated by the ground state in the channel,
the pion, and we find
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〈0|P (t;p)O(τ)P (r)|0〉 (11.102)

= 〈0|P (t;p)|π(p)〉e
−Ep(t−τ)

2Ep
〈π(p)|O(τ)|π(r)〉e

−Erτ

2Er
〈π(r)|P (0; r)|0〉 ,

and for the pseudoscalar propagator,

〈0|P (t;p)P (p)|0〉 = 〈0|P (t;p)|π(p)〉e
−Ept

2Ep
〈π(p)|P (0;p)|0〉 . (11.103)

Here we neglect the lattice periodicity in time direction, otherwise there will
be further terms from the backward propagation. This has been discussed,
e.g., in [56].

One now constructs a suitable combination of these functions, such that
the unknown factors and the exponentials cancel:

R(t, τ ;p,q ≡ p − r) =
〈π(p)|O(τ ;q))|π(r)〉

2
√

EiEf
=

〈P (t;p)O(τ ;q)P (0; r)〉
〈P (t;p)P (0;p)〉

×

√
〈P (t;p)P (0;p)〉 〈P (τ ;p)P (0;p)〉 〈P (t − τ ; r)P (0; r)〉
〈P (t; r)P (0; r)〉 〈P (τ ; r)P (0; r)〉 〈P (t − τ ;p)P (0;p)〉

. (11.104)

One can keep the sink fixed at time t and vary the time slice τ where the
operator O sits (scanning a range of time slices). As a consequence, R(t, τ ;p,q)
exhibits two plateaus in τ : 0 + τ + t and t + τ + NT . In the case in
which the sink is put at t = NT /2 the ratio is (in our case) anti-symmetric in
τ−NT /2. The value of the form factor can be read off from the plateau values.
Further normalization factors due to smearing of source and sink operators
cancel also in the ratio.

The resulting plateau value for Q2 = 0 will not necessarily be 1, which is
the electric charge in our example. This is because the naive lattice current
Vµ of (11.95) is not conserved. One could replace it by the conserved current,
which, however, is numerically demanding for chiral actions, as discussed in
Sect. 11.1.3. For other actions even the conserved current will need O(a)
correction terms to obtain improved currents (see Sect. 9.1). Taking the simple
point-like current one has to determine the renormalization factor ZV relating
it to the renormalized current V (r)

µ .
Source, insertion, and sink are located on three time slices. The source

operator usually is localized on or around a site. In a Fourier decomposition
it therefore contributes to all possible 3-momenta. By projecting the sink to a
3-momentum p and the insertion to q, the relevant component of the source is
r = p−q. All other contributions cancel in the sum over all field configurations
due to translation invariance. In a realistic situation with a large but finite
number of gauge configurations the cancellation is only approximate.

For the electromagnetic pion form factor a suitable choice of the 3-
momenta is |pf | = |pi| such that Ei = Ef . In that situation Q2 = |q|2
and combining (11.94) and (11.96) the kinematical factors simplify due to
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Ei + Ef

2
√

EiEf
= 1 . (11.105)

This removes another possible source of statistical errors. A possible way to
minimize the computational effort is to fix the momentum of the sink to
p = (1, 1, 0)∆p for ∆p = 2π/(aN), the spatial momentum gap. Thus one has
to compute one further (sequential) propagator for each configuration. The 3-
point function is then evaluated for q values such that |r| = |p−q| =

√
2 = |p|.

These are the 12 combinations (0, 0, 0), (2, 2, 0), (2, 0, 0), (0, 2, 0), (0, 1,±1),
(1, 0,±1), (2, 1,±1), (1, 2,±1). This leads to results for Q2 = 2n(∆p)2 with
n = 0, 1, 2, 3, 4.

The momentum projection for the 2-point and 3-point functions gives rise
to significant statistical noise, in particular close to the symmetry point t =
NT /2. One therefore chooses the position of the sink at time slices somewhat
closer to the source. The matrix elements are then obtained by combining the
plateau values on either side of the sink Rlhs ± Rrhs where the relative sign
depends on the parity properties of the interpolator. The sign is negative for
the vector form factor.

The earliest lattice studies of the pion form factor were [57, 58]. The space-
like form factor usually is well approximated by the time-like ρ pole, which
in quenched calculations [59, 60] at unphysical large quark masses is larger
than the experimental value. For simulations with dynamical quarks, extrap-
olating to physical quark masses, agreement with the physical ρ mass and
the measured pion form factor improves [56, 61, 62]. The pion is at the heart
of chiral symmetry breaking and therefore ChPT provides several constraints
[53, 63–65].

11.4.2 Weak matrix elements

Weak interactions couple almost point-like to quarks, but the quarks live
in the QCD-dominated environment of the hadron. Nonperturbative effects
define the hadron structure and therefore are important to analyze the way
the weak interactions “see” the hadron.

In the standard model (SM) the electroweak interactions are mediated by
the photon and the heavy vector bosons W± and Z0. These bosons couple
to bilinear combinations of leptons and bilinear combinations of quarks, thus
allowing for quark flavor changing processes. The six flavors of quarks are
arranged in three families: (u, d), (c, s), and (t, b). The weak interactions
“see” the quark flavors slightly differently than the strong interactions. The
corresponding flavor eigenstates are denoted by d′, s′, and b′ and are related to
the mass eigenstates d, s, and b via the Cabibbo–Kobayashi–Maskawa (CKM)
matrix [66, 67]




d′

s′

b′



 = VCKM




d
s
b



 =




Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb








d
s
b



 . (11.106)
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The other three quarks may be left unchanged without loss of generality. The
CKM matrix is complex (allowing for CP violation) and unitary (enforcing
absence of flavor changing neutral current transitions at tree level). For a
review on these aspects, see [68, 69].

With certain further phenomenologically motivated approximations the
matrix is often formulated in terms of four so-called generalized Wolfenstein
parameters: λ = Vus = sin θc, A, ρ, and η. These parameters may be related
to various experiments. A nonvanishing η is responsible for CP violation in
the standard model.

Unitarity of the CKM matrix gives relations like

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0 . (11.107)

This relation can be represented as the “unitarity triangle” in the (ρ, η) plane.
The endpoints of the triangle’s base are (0, 0) and (1, 0) and the third corner
is then constrained by experiments, in particular by K and B physics results.
Lattice calculations may help in determining the QCD input relevant for the
computation of the CKM matrix elements [70–72].

11.4.3 OPE expansion and effective weak Hamiltonian

Weak decays of hadrons involve two mass scales: the heavy intermediate vector
bosons W± and Z and the QCD low-energy scale dominating the hadron
structure. One separates the problem into distinct parts by introducing an
effective weak Hamiltonian

Heff =
GF√

2

∑

i

V i
CKMCi(µ)Qi(µ) . (11.108)

Here GF is the Fermi constant and the Qi denote local operators, built from
quark and lepton fields. The CKM factors and the Wilson coefficients Ci gov-
ern the weight of the operators. This is the so-called operator product expan-
sion (OPE) [46–49]. One of the local operators is just the well-known product
of (V − A) currents from the Fermi theory for β-decay. Expectation values
of these terms between hadronic states then are related to the experimental
observables.

The Wilson coefficients (short-distance scale) can be computed in pertur-
bation theory (cf., the NLO calculation [68]). The long-distance (nonpertur-
bative) scale is encoded in the Qi evaluated at a renormalization scale µ.
Typically µ is of the order of 1–2 GeV or higher; it is, however, much smaller
than the weak interaction scale MW and therefore corrections O(µ2/M2

W ) are
negligible. In lattice calculations one computes the hadronic matrix elements
〈h|Qi|h′〉, i.e., matrix elements of four-quark operators between hadronic
states (cf., Fig. 11.4).

When one uses lattice Dirac operators that do not obey the Ginsparg–
Wilson equation, the lack of chiral symmetry leads to significant complica-
tions [73]:
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• For K − K mixing and computation of BK one needs operators like
OLL = (sγµ(1− γ5)d)2. If chiral symmetry is not guaranteed, upon renor-
malization these operators mix with other operators of different chirality
like OPP = (sγ5d)2. Whereas the matrix element 〈K|OLL|K〉 vanishes in
the chiral limit (proportional to the quark mass), the element 〈K|OPP |K〉
approaches a constant and therefore high accuracy is necessary to separate
the physically interesting part.

• Operators of the effective Hamiltonian mix with lower dimensional oper-
ators. An example is the ∆S = 1 Hamiltonian relevant to K → ππ. The
dimension-6 operator sγµ(1− γ5)u uγµ(1− γ5)d mixes with operators like
sd, sγ5d, and sγµγνGµνd (where G denotes the gluon field). The mixing
coefficients diverge in powers of 1/a and precise nonperturbative methods
have to be employed to deal with these problems.

With actions like the Wilson action, that violate chiral symmetry, compu-
tations are therefore cumbersome due to the need to subtract divergent terms.
Using Ginsparg–Wilson fermions, on the other hand, improves that situation
significantly. For the ∆I = 1

2 problem one does not have any power divergent
subtractions [74] and for the computation of ε′/ε subtraction is needed (for a
review see, e.g., [13]).

Nonleptonic weak decays, where the final state consists exclusively out of
hadrons, like K → ππ, are a challenging task. There are two main groups
of problems. The ultra-violet problem is to construct finite matrix elements
of renormalized operators from the bare lattice operators; this is discussed in
[6, 75–77]. The infrared problem has to do with re-scattering of the outgoing
two-particle system, the continuation from Euclidean to Minkowski space–
time and the effects of the spatial volume.

The Maiani–Testa theorem [78] states that in Euclidean calculations in
very large spatial volumes the matrix element is dominated by the pair of
zero momentum single-particle states. In infinite volume in Euclidean corre-
lation functions one obtains the average of matrix elements into in- and out
two-pion states. This situation improves, however, when dealing with finite
volumes. Lellouch and Lüscher [79] derived a relation between the K → ππ
matrix elements in finite volume and the physical kaon-decay amplitudes. In
accessible finite volumes the two-pion energy spectrum is far from being con-
tinuous and a kaon at rest cannot decay into two pions (unless one of the
two-particle energy levels is close to its mass). A simple expression then re-
lates the transition amplitude in finite volume to the decay rates in infinite
volume. The work has been adapted [80] to include all elastic states below the
inelastic threshold. The methods allow to extract the decay amplitudes also
when the kaon mass is not equal to the two-pion energy, i.e., when an inserted
(weak Hamiltonian) operator carries nonvanishing energy momentum. For a
review on lattice results for kaon physics see [81] and, more generally, for what
lattice QCD can do for the standard model, see [82].
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56. D. Brömmel et al.: Eur. Phys. J. C 51, 335 (2007) 293, 294
57. G. Martinelli and C. T. Sachrajda: Nucl. Phys. B 306, 865 (1988) 294
58. T. Draper, R. Woloshyn, W. Wilcox, and K.-F. Liu: Nucl. Phys. B 318, 319

(1989) 294
59. J. van der Heide, J. Koch, and E. Laermann: Phys. Rev. D 69, 094511 (2004) 294
60. S. Capitani, C. Gattringer, and C. B. Lang: Phys. Rev. D 73, 034505 (2005) 294
61. F. D. R. Bonnet et al.: Phys. Rev. D 72, 054506 (2005) 294
62. S. Hashimoto et al.: PoS LAT2005, 336 (2005) 294
63. H. Gausterer and C. B. Lang: Z. Phys. C 28, 475 (1985) 294
64. G. Colangelo, J. Gasser, and H. Leutwyler: Nucl. Phys. B 603, 125 (2001) 294
65. J. Bijnens: PoS LATTICE2007, 004 (2007) 294
66. N. Cabibbo: Phys. Rev. Lett. 10, 531 (1963) 294
67. M. Kobayashi and T. Maskawa: Prog. Theor. Phys. 49, 652 (1973) 294
68. J. Buras: in Proccedings of the International School of Subnuclear Physics: 38th

Course: Theory and Experiment Heading for New Physics, Erice, Italy, 27 Aug–
5 Sep 2000, edited by A. Zichichi (World Scientific, Singapore 2001) 295

69. J. Buras: in Lectures given at the European CERN School, Saint Feliu de Guixols,
2004 (CERN, Geneva, Switzerland 2005) 295

70. Z. Ligeti: PoS LAT2005, 012 (2005) 295
71. M. Okamoto: PoS LAT2005, 013 (2005) 295
72. 5th International Workshop on the CKM Unitarity Triangle: http://ckm2008.

roma1.infn.it (2008) 295
73. A. Soni: Pramana 62, 415 (2004) 295
74. S. Capitani and L. Giusti: Phys. Rev. D 64, 014506 (2001) 296
75. L. Maiani, G. Martinelli, G. C. Rossi, and M. Testa: Phys. Lett. B 176, 445

(1986) 296
76. L. Maiani, G. Martinelli, G. C. Rossi, and M. Testa: Nucl. Phys. B 289, 505

(1987) 296
77. C. Bernard, T. Draper, G. Hockney, and A. Soni: Nucl. Phys. B (Proc. Suppl.)

4, 483 (1988) 296



References 299

78. L. Maiani and M. Testa: Phys. Lett. B 245, 585 (1990) 296
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12

Temperature and chemical potential

Since the big bang the universe has cooled down substantially. Still, under-
standing QCD at high temperature and at high matter density is important
for various reasons. One of them is obviously a better understanding of quark-
and gluon matter shortly after the big bang and of the condensation of hadrons
in the cooling process. Many objects in the universe, like neutron stars, sup-
posedly have high enough density or temperature to expect that hadronic
matter behaves differently compared to usual atoms. On earth very energetic
collisions of heavy ions provide also possibilities to study matter under ex-
treme conditions. Thus studying QCD at high temperature and density from
first principles is a challenging task for the lattice approach.

Intuitively one may expect that at a density higher than in the nucleons
and at a temperature above the pion mass the hadrons loose their individuality
as bound states and new structural phases emerge. One anticipates phase
transitions and the lattice formulation is a natural setting for the study of such
collective phenomena. The studies should reveal the existence and the kind
of transitions to different states of matter and their properties, as well as the
behavior of the possible other states of matter in an unusual environment, thus
helping us to understand experiments as well as astrophysical observations.
Reviews for progress in lattice thermodynamics are, e.g., found in [1–5].

In today’s lattice approach we always study a system in equilibrium and
not the evolution and decay dynamics of the system. This challenge is left for
the future.

12.1 Introduction of temperature

In Sect. 1.4.3 we have discussed the relation of a Euclidean quantum field the-
ory to the partition function (1.13) of a classical statistical mechanics system
in a heat bath with temperature T . For the quantum mechanical case the
partition function is given by

Gattringer, C., Lang, C.B.: Temperature and Chemical Potential. Lect. Notes
Phys. 788, 301–326 (2010)
DOI 10.1007/978-3-642-01850-3 12 c© Springer-Verlag Berlin Heidelberg 2010
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Z(T ) = tr
[
e−Ĥ/(kBT )

]
= tr

[
e−β Ĥ

]
, (12.1)

where Ĥ is the Hamiltonian operator and β now denotes the inverse temper-
ature β = 1/(kBT ), with the Boltzmann constant kB . This is the standard
notation, which, unfortunately, often leads to confusing β with the inverse
gauge coupling. Unless stated otherwise, in this chapter β exclusively denotes
the inverse temperature. In our subsequent discussion we follow the usual
choice of units setting kB = 1. Then the temperature T is given in units of
energy or mass and β = 1/T .

Due to the trace in (12.1) we are restricted to fields that are periodic
(bosons) or anti-periodic (fermions) in time. Like in Chap. 1 the partition
function can be transformed to a path integral over such field configurations.
However, contrary to our discussion there, we now do not assume that the
time extent becomes infinite. Instead we obtain the functional integral (Φ
being some generic field)

Z(T ) =
∫

D[Φ] e−SE [Φ] , (12.2)

where the integration is over fields, (anti-)periodic in the finite time direction.
The Euclidean action results from an integral over all space but finite time
extent:

SE [Φ] =
∫ β

0
dt

∫

R3
d3x LE (Φ(t,x), ∂µΦ(t,x)) . (12.3)

The measure D[Φ] and the action SE [Φ] are discretized on a lattice as usual.
In the discretization we find that only our point of view changes. Until now,
working at “zero temperature” we were interested in results in the infinite
space–time volume limit and we discussed deviations as finite size effects.
Space and time extent were considered as much larger than the largest corre-
lation length in the system – that of the pion. Now space is still considered in
that limit, but the physical extent of time is limited to β. For a finite lattice
the space extent is aN and the time extent is aNT . We thus have

β = aNT =
1
T

(12.4)

and find that the limit β → ∞ corresponds to T → 0. We interpret this as
a system with finite spatial volume and fixed temperature T . The continuum
limit of such a system corresponds to a → 0 while holding aN and aNT fixed.
Finite volume effects become smaller when N/NT becomes larger.

Arguing again with physical intuition we may expect to observe finite
temperature effects when the correlation length of the pion 1/Mπ reaches the
time extent aNT , and it has been found that T is indeed not far from the
value Mπ.

The fact that the temporal extent β is kept finite has important physical
consequences. If Fourier transformation is applied to the finite time direction
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one finds that only discrete energy levels with spacing ∆ = 2π/β are allowed.
Integer multiples of this value ∆ are often referred to as Matsubara frequencies.

Due to the lattice structure the Matsubara frequencies are not only discrete
but also limited to the range (−π/a, π/a], taking for boson states values k∆
(for −NT /2 + 1 ≤ k ≤ NT /2) with ∆ = 2πT = 2π/(aNT ). For fermions,
which obey anti-periodic boundary conditions in time direction, the values
are shifted by ∆/2 (cf. Appendix A) and the smallest quark Matsubara mode
thus has energy ∆/2.

12.1.1 Analysis of pure gauge theory

Let us first discuss pure gauge theory at finite temperature. For this case
we introduced in Sect. 3.3.5 an important observable, the Polyakov loop. It
is defined as the trace of the ordered product of gauge link variables in time
direction, closed due to periodicity:

P (m) = tr




NT −1∏

j=0

U4(m, j)



 . (12.5)

The correlator 〈P (m)P (n)†〉 is related to the potential between a pair of a
static quark and antiquark (compare (3.61)), i.e., the free energy Fq̄q of such
a pair at a given temperature:

〈P (m)P (n)†〉 = e−a NT Fq̄q(a|m−n|) = e−Fq̄q(r)/T . (12.6)

As usual the energy has to be normalized at some distance. For large distances
we expect factorization

lim
a|m−n|→∞

〈P (m)P (n)†〉 = 〈P (m)〉〈P (n)†〉 = |〈P 〉|2 . (12.7)

Due to translational invariance the spatial position of the Polyakov loop is
irrelevant and we have therefore omitted it on the right-hand side of (12.7)
and instead use the spatial average

P =
1

N3

∑

m

P (m) . (12.8)

We observe that for static potentials that grow indefinitely with separation
distance, such as the confining potential (3.62) at σ > 0, |〈P 〉| has to vanish.
Therefore, we conclude

〈P 〉 = 0 ⇐⇒ confinement ,

〈P 〉 )= 0 ⇐⇒ no confinement . (12.9)

At low temperatures QCD is confining. As the temperature is increased, pure
gauge theory undergoes a phase transition [6, 7] at a critical temperature Tc of
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about 270 MeV. There the system deconfines and 〈P 〉 acquires a nonvanishing
value (cf., the left-hand side of Fig. 12.1).

An individual Polyakov loop P (m) is nothing but a Wilson loop at fixed
spatial position extending in the temporal direction and closed due to peri-
odicity. We may interpret its expectation value as the probability to observe
a single static charge. With

|〈P 〉| ∼ e−Fq/T (12.10)

we relate it to the free energy of a single color charge. From (12.9) we conclude
that Fq → ∞ for confinement and Fq finite in the deconfined phase.

The deconfinement transition in quenched QCD has another interesting
interpretation in terms of the so-called center symmetry or Z3 symmetry.
From the definition of the Polyakov loop in (3.60) it is obvious that it is
a gauge-invariant quantity and cannot be made unity by a gauge transfor-
mation. However, on a finite lattice any given gauge configuration has the
same statistical weight as the one obtained by a center transformation. This
transformation consists of multiplying all temporal links in a given time slice
n4 = t0 with the same element z of the center group Z3 of gauge group SU(3):

U4(n, t0) → z U4(n, t0) . (12.11)

The center elements of SU(3) are the cubic roots (1, 1 e2πi/3, 1 e−2πi/3). The
reason for this symmetry is that the gauge action is constructed from products
of link variables along trivially closed loops. Each trivially closed loop has as
many elements in one direction as in the opposite. Center elements commute
with all group elements and therefore cancel in the closed loop products. For
example, a plaquette in the (µ, 4)-plane at n4 = t0 transforms according to

tr
[
Uµ(n, t0)U4(n + µ̂, t0)Uµ(n, t0 + 1)† U4(n, t0)†

]

−→ tr
[
Uµ(n, t0) z U4(n + µ̂, t0)Uµ(n, t0 + 1)† U4(n, t0)† z†

]

= tr
[
z z† Uµ(n, t0)U4(n + µ̂, t0)Uµ(n, t0 + 1)† U4(n, t0)†

]
.

(12.12)

Since z z† = 1, the gauge action is invariant. Plaquettes in spatial planes or
with n4 )= t0 are not affected. This global symmetry is the heart of the proof
of confinement of static charges in the strong coupling limit in Sect. 3.4.

The Polyakov loop, however, does not close in a topologically trivial way,
but instead winds once around the compact time direction. Thus it is not
invariant under transformation (12.11). Since we multiply the temporal links
in only one time slice with a center element z, the Polyakov loop transforms
as

P −→ z P . (12.13)

Due to the symmetry of the action the expectation value of the Polyakov loop
may be written as
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〈P 〉 =
1
3
〈
P + z P + z2 P

〉
=

1
3

(
1 + ei2π/3 + e−i2π/3

)
〈P 〉 = 0 . (12.14)

The right-hand side vanishes since the sum over the center elements is zero.
The analysis (12.14) breaks down, when the center symmetry is broken. In
particular this symmetry is broken spontaneously above the critical value of
the temperature. Thus the finite temperature transition of quenched QCD
signals a spontaneous breaking of the center symmetry [8]. The Polyakov loop
(also called thermal Wilson line) is an order parameter distinguishing between
a confinement phase, where free charges cannot be found, and a deconfinement
phase, where single charges are screened and may be observed.

Combining several of such charges leads to nonvanishing expectation values
as long as the charges combine to a color singlet. This allows the definition
of, e.g., the static potential between static charges. Also the evolution of flux
tubes (concentration of gluonic energy) in situations of two or more static
charges has been studied [9–13].

The center symmetry property resembles that of a three-state spin model
with spin variables ∈ Z3 living on the sites of the 3D spatial lattice volume
[14, 15]. Such a model exhibits a phase transition at some value of its nearest
neighbor coupling – but only for an infinite volume. In a finite volume the
symmetry cannot be broken in a strict sense. However, computer simulations
at coupling values, where one would expect symmetry breaking in the infinite
volume situation, may stay for long persistence periods in one of the three
sectors, before a tunneling to another sector occurs.

The definition and measurement of the order parameter are a delicate issue.
In spin systems one introduces an external field, lets the volume go to infinity
and, then the external field to zero. This order of limits is important, since
the spontaneous magnetization vanishes for any finite volume. For the gauge
theory we have a similar situation preventing the correct determination of 〈P 〉
in a finite volume. Technically, larger lattices lead to long periods in one of
the sectors and thus one may expect good approximate determinations of this
would-be order parameter. However, the systematic error due to tunneling is
not under control. In the updating procedure one can even explicitly enforce
the center symmetry by regularly multiplying all gauge links in a time slice
with a nontrivial center element. This does not change the gauge action. Then
it becomes obvious that 〈P 〉 is bound to vanish for sufficiently long runs.
Instead of 〈P 〉 one therefore often plots and analyses 〈|P |〉, which agrees with
|〈P 〉| in the infinite volume limit.

In order to simulate at finite temperature 1/(aNT ) one either changes NT

or the gauge coupling and therefore the lattice spacing a. Changing a allows
for a continuous scan over T . In Fig. 12.1 we show the result of a simulation of
pure gauge theory on a lattice of size 163×4 for a range of coupling values such
that T is close to the transition point from confinement to deconfinement. In
the left-hand side plot we show 〈|P |〉 as a function of T . The right-hand side
is a scatter plot of P for individual configurations at a fixed value of T > Tc.
In the simulation also the center symmetry was updated and the values of P
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Fig. 12.1. L.h.s.: The expectation value 〈|P |〉 as function of the temperature T . In
computing T = 1/(NT a) = 1/(4a) the lattice spacing has been determined using the
static potential as discussed in Sect. 3.5, cf. (3.83) (for r0 = 0.5 fm). The results are
from a simulation on lattice size 163 ×4 averaging over 100 measured configurations
for each value of the gauge coupling (i.e., the temperature); for a realistic determi-
nation better statistics and an extrapolation to infinite volume should be performed.
R.h.s.: Scatter plot of Polyakov loop results in the complex plane for 1500 individual
gauge configurations. In the broken phase the values of P concentrate around the
three center phases. The data are from a run with 〈|P |〉 = 0.53

concentrate in the directions of the center elements. The results in general will
be affected by the finiteness of the spatial volume and by scaling corrections.
Comparing different parameter settings allows one to study both.

Monte Carlo calculations for the quenched theory have been performed al-
ready very early [16–18] and improved considerably since then [19, 20]. Care-
ful studies revealed that the phase transition is weakly first order. This is in
agreement with the analogy to the Z3-spin model [14].

In the determination of the transition temperature the lattice spacing en-
ters and the scale has to be fixed, as discussed in Sect. 3.5. The currently
accepted value is Tc ≈ 270 MeV for the quenched situation. Results from
different improved gauge actions, extrapolated to the continuum limit, agree
within a few percent.

In studies of the transition various standard tools of statistical physics have
been employed. An informative quantity is the Polyakov loop susceptibility

χP = N3
(
〈P 2〉 − 〈P 〉2

)
, (12.15)

which peaks at the transition. The value and position of this peak follow finite
size scaling laws [21] and lead to information on the infinite volume values from
finite volume measurements.

Typical computer simulations at finite T should have spatial extents much
larger than the temporal size in order to reduce finite size effects. Thus NT is
relatively small, which limits the number of different Matsubara frequencies.
It also complicates attempts to determine exponential decay properties in
time direction of observables like particle propagators since at large T , i.e.,
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small NT , they can be followed only over very few time steps. For that reason
one also has introduced different lattice spacings a and aT in spatial and
temporal directions, respectively, with a > aT . This may be obtained by
choosing different gauge couplings multiplying the time-directed plaquettes
and the purely spatial plaquettes. Keeping the ratio ξ = a/aT large allows
one to have large NT while keeping the temperature constant. This method
introduced in [22, 23] is discussed in more detail in [24].

12.1.2 Switching on dynamical fermions

Dynamical fermions break the Z3 symmetry explicitly and this affects the
Polyakov loop as well. A simple way to see this comes from the hopping
expansion of the fermion determinant introduced in Sect. 5.3.2. The exponent
in (5.65) may be considered as an effective fermionic action. It is a sum over
closed loops, like the gauge action itself. However, these are now all possible
loops on the lattice, including the ones that wind nontrivially around the
compactified time direction. In particular this sum will also include Polyakov
loops and therefore terms proportional to

κNT (P + P ∗) . (12.16)

Due to the transformation property (12.13) such a term in the effective action
is no longer invariant under an overall multiplication of all gauge links in a time
slice with an element of the group’s center and therefore the fermions break
the center symmetry. In full QCD one finds that the Polyakov loop settles
around real positive values. In some sense one can consider the fermions’ role
like that of an external, symmetry-breaking magnetic field in a spin model.

Another, more intuitive, picture is that the dynamically generated vac-
uum loops screen the individual charges, similar to the Debye screening of
electric charges in a polarizable medium. The potential computed from the
correlation function (12.6) will saturate at some distance and may be approx-
imated by a screened Coulomb potential ∝ exp (−µ|r|)/|r|. Eventually the
notion “potential” looses its meaning, since it becomes energetically more fa-
vorable to produce a quark–antiquark pair from the vacuum, saturating the
test charges: the “string breaks.” The Polyakov loop and the Wilson loop are
no longer true-order parameters. Confinement now has to be defined differ-
ently, namely through the spectrum of the asymptotic states of the system,
i.e., the color neutral hadrons. Based on these considerations an alternative
definition of the order parameter was given in [25, 26].

In our theoretical world we can change the quark mass parameter m con-
tinuously. Let us first discuss the case of two flavors with equal mass mu,d (cf.
Fig. 12.2). If we let the mass approach infinity, the quarks decouple and we are
in the quenched situation with a first-order temperature phase transition. De-
creasing the quark mass this transition persists but the latent heat decreases
and the transition becomes weaker. Eventually the first-order transition line
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Fig. 12.2. The plot elaborates the phase structure in the (T, m)-plane for the
Nf = 2 sub-manifold (front side of the 3D plot in Fig. 12.3)

in the (g,m) plane ends with a second-order point. The regions neighboring
to the confinement and the deconfinement domains are therefore analytically
connected. Such a crossover is not unusual. Just think of water in its three
phases: ice, liquid, and vapor. Depending on the pressure and temperature
there may be phase transitions but also continuous crossover-type transitions.

However, we are not yet done. Decreasing the quark mass further we finally
arrive at the situation of massless quarks, where the action is chirally invariant
(if a suitable discretization is used). As we have discussed in Chap. 7, the full
theory breaks the chiral symmetry spontaneously at zero temperature. The
corresponding order parameter is the quark condensate Σ defined in (7.63),
which, however, is an order parameter only for the massless theory. As one
increases T the condensate shows a transition. Its value vanishes at some
critical temperature Tch and stays zero for higher temperatures. Thus the
condensate may be considered a valid order parameter indicating the chiral
temperature transition (cf. Fig. 12.2).

In Sect. 7.3.5 we have related the chiral condensate to the spectral density
of the Dirac operator eigenvalues near the origin via the Banks–Casher relation
(7.77). This formula describes the situation also above the transition: At Tch

a gap opens up in the spectrum and the chiral condensate vanishes.
A highly nontrivial observation is that confinement also seems to go away

at about the same temperature Tch which suggests a strong connection be-
tween confinement and chiral symmetry breaking. This equality of Tdeconf and
Tch has been disputed recently [1, 2, 27]. Possible reasons for the controversy
may be related to the definition of the pseudo-critical transition point(s) and
to the fermion species and masses used in the simulations.

The value of Tch is not easy to determine, since it requires a simulation
at vanishing quark masses. Also, it depends on the number of quark species
considered. Typical values obtained by various simulations and extrapolations
range between Tch ≈ 150 MeV [27] and Tch ≈ 190 MeV [28]. This – compared
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Fig. 12.3. Sketch of the phase structure in the (T, mu,d, ms)-space for two mass-
degenerate flavors (mass mu,d) and another third flavor (ms) and vanishing quark
number density/chemical potential µ = 0. The skewed shaded area indicates the
position of the crossover transition and, where the shading is dark, the region where
the transition is of first order. At the boundaries of the first-order region one has a
second-order phase transition. The boundary lying in the mu,d = 0 plane may have
a second-order part, joining the first-order domain at a tricritical point. The figure
is based on information discussed and summarized in [29]

to pure gauge theory – smaller value may be understood from the observation
that in the quenched case the only bound states are rather heavy glueballs.
Therefore, larger temperatures are needed to generate a glueball gas dense
enough to enable deconfinement. There is some caution advisable, though, as
mentioned above.

Figure 12.3 illustrates our present knowledge on the phase diagram in a
space of two mass-degenerate quarks with mass mu,d and a third quark with
mass ms. It is presently uncertain, whether for the physical quark masses (in-
dicated by a dotted circle in the plot) the transition is located in the crossover
or in the first-order domain.

Lattice results with two light and with or without a heavier strange quark
near their physical mass values find a rapid but smooth crossover from lower
to higher temperature, but no convincing evidence for a universal critical
behavior has been found. Working at smaller lattice spacing, closer to the
continuum limit, and with improved fermion actions with smaller cutoff effects
may help to further clarify that situation [30, 31].

The order of the chiral temperature transition is less established than that
for the pure gauge theory and depends on the number of quark flavors. Pisarski
and Wilczek [32] have studied an effective 3D model field theory for the order
parameter, assuming the underlying spontaneously broken chiral symmetry
of QCD. A renormalization group analysis then led to the suggestion that the
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chiral transition is second order for Nf = 2 but weakly first order for Nf = 3.
In the latter case the transition again extends toward m > 0 with a second-
order endpoint. This endpoint and the endpoint of the transition line starting
at the pure gauge theory are connected by a so-called crossover curve. This is
a maximum of some observables (like the specific heat) but not the locus of
nonanalyticity.

Like for the Polyakov loop, also the derivative of the condensate, the chiral
susceptibility

χch =
∂Σ

∂m
(12.17)

is a useful quantity to locate the transition point, and it also has definite finite
size scaling behavior. Although neither Σ nor 〈P 〉 are strict order parameters
for 0 < m < ∞ their values can still be used to study the position of the
phase transition lines.

12.1.3 Properties of QCD in the deconfinement phase

Formally the partition function depends on several parameters: the volume,
the temperature, the quark masses, and the gauge coupling. One defines ther-
modynamic quantities like the energy density ε or the pressure p by derivatives
of the free energy (F = − ln(Z)/β):

ε ≡ − 1
V

∂ lnZ

∂β
=

T 2

V

∂ lnZ

∂T
, p ≡ T

∂ lnZ

∂V
, Σi =

∂ lnZ

∂mi
. (12.18)

Here V denotes the spatial volume and, as usual, β = 1/T .
As already addressed, the confinement and the deconfinement regions are

analytically connected. Still we may expect quite different properties of matter
in these regions, although the transition may be a gradual one. For large
temperature the scale for the running coupling is set by T and this brings one
to the small gauge coupling perturbative regime. Asymptotic freedom then
lets one expect a gas of weakly interacting quarks and gluons: a plasma. This
is why the high-temperature phase is usually called the quark-gluon plasma
phase [33].

A relativistic ideal gas of (noninteracting) QCD gluons and quarks at
high temperature follows the Stefan–Boltzmann law and has the pressure and
energy density [34],

p =
π2

45

(
8 +

21
4

Nf

)
T 4 , ε = 3p (equation of state) . (12.19)

Due to the larger number of degrees of freedom of quarks and gluons this is
much larger than what one expects from a gas of, say, the three light pions π0

and π±. It is not clear how quickly hadrons dissociate and such a behavior is
obtained. Figure 12.4 demonstrates that this may happen only at quite high
values of T .
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Fig. 12.4. Pressure p determined from simulations for pure SU(3) gauge theory
and QCD with two or three light quarks or two light and one heavy quark (2+1)
with ms ≈ T [35] (figure from [36]). The arrows on the right-hand side of the plot
indicate the corresponding infinite temperature limits from the Stefan–Boltzmann
law (12.19). (From: Karsch [36]. Reprinted with permission from AIP)

Due to the crossover nature of the transition the particle spectrum may
change gradually from the (for zero temperature well-known) spectrum of
mesons and baryons to some intermediate state before asymptotic behavior
sets in and a plasma of quarks and gluons defines the ground state. The
restoration of chiral symmetry above Tch may be realized by degenerate par-
ity partners, but still, e.g., mesonic bound states. The region presently ac-
cessible in heavy ion experiments is typically close to the transition and the
observations thus may be dominated and obscured by the intermediate phase-
changing properties.

As mentioned, because of the small Euclidean time extent (less than 1 fm)
it is quite problematic to use the standard approach for determining the par-
ticle spectrum by studying correlation functions in time direction, although
this has been tried [37–39]. One can, however, analyze the spatial correlation
functions, which leads to so-called screening masses [40–43]. Integrating the
propagators over all space and time gives the thermal susceptibilities involv-
ing a contact term, which has to be subtracted. The integration involves a
sum over all states in the corresponding quantum channel, though. Follow-
ing these through the transition indicates that the masses of π(0−+) and the
isoscalar f0(0++) become degenerate quickly above Tch, indicating a restora-
tion of SU(2) flavor symmetry. The mass of the isovector a0(0++) is still
different from that of the pion, though, indicating persistent UA(1) symmetry
breaking.
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12.2 Introduction of the chemical potential

The net number of baryons or quarks in the vacuum is zero, but it is not in
matter. In extreme situations, like heavy ion collisions or ultra-dense matter
in neutron stars, one has to consider the effect of nonvanishing quark number
density nq. In this case we have to extend the partition function of the grand
canonical ensemble (12.1):

Z(T, µ) = tr
[
e−(Ĥ−µN̂q)/T

]
. (12.20)

We have added to the total action a term introducing a quark chemical poten-
tial µ which multiplies the quark number operator N̂q. Sometimes the baryon
number operator N̂B = N̂q/3 and the baryon chemical potential µB = 3µ are
used instead.

Since the quark number operator N̂q assumes integer values, one may
expand the grand canonical partition function Z(T, µ) in a power series of the
fugacity variable

z = eµ/T . (12.21)

The result of this fugacity expansion is a sum over canonical partition functions
Zn(T ) with a fixed quark number n ∈ Z

Z(T, µ) =
∑

n

(
eµ/T

)n
Zn(T ) , (12.22)

where negative values of n correspond to a net surplus of antiquarks. On a
finite lattice the sum over the quark number n is finite, i.e., |n| ≤ nmax. For a
spatial volume with N3 points each flavor of Wilson fermions contributes to
nmax the number 6N3.

With the help of the grand canonical partition function (12.20) we can
compute new observables such as the expectation value of the quark number
density

nq ≡ 1
V

〈N̂q〉 =
T

V

∂ lnZ(T, µ)
∂µ

. (12.23)

The quark number density of the physical environment will affect the phase
structure and the location and properties of the finite temperature phase
transition.

In addition to the gauge coupling and the quark mass parameters, familiar
from previous chapters, and the temperature T introduced in the last section,
we now have the additional parameter µ. The phase diagram will become
increasingly complicated, as we will see in the discussion in Sect. 12.2.2.

12.2.1 The chemical potential on the lattice

How can we introduce the quark number density in the lattice action? The
Euclidean continuum quark number operator is given by the spatial volume
integral over the temporal component
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ψ(x) γ4 ψ(x) (12.24)

of the conserved vector current ψγµψ. In a lattice implementation one is
tempted to add to the Dirac operator (2.36) such a term multiplied with
µ, since the factor 1/T comes from integrating over the finite time direction.

That simplistic ansatz runs into problems, though. In order to see this
let us discuss the free case. We will show that there the energy density ε(µ)
becomes divergent in the continuum limit and that this unphysical divergence
is a consequence of the naive introduction of the chemical potential according
to (12.24).

The free energy density is given by

ε(µ) =
1
V3

〈Ĥ〉 = − 1
V3Z

∂

∂β
tr
[
e−βĤ

]
= − 1

V3Z

∂

∂β
Z = − 1

V3

∂

∂β
lnZ ,

(12.25)
where V3 is the spatial volume and Z = tr

[
exp(−βĤ)

]
. When evaluating the

energy density on the lattice it is convenient to introduce a different lattice
spacing aT for the temporal direction, which in the end of the calculation can
be set equal to the lattice spacing a used for the spatial direction. Due to the
fact that for the free case the partition function is Z = det[D], we find for the
energy density (using β = NT aT )

ε(µ) = − 1
(aN)3

∂

∂(NT aT )
ln (det[D])

∣∣∣
µaT =const

= − 1
(aN)3NT

∂

∂(aT )
ln (det[D])

∣∣∣
µaT =const

. (12.26)

For the evaluation of ε(µ) we need to compute the determinant of the lattice
Dirac operator D. For free fermions with a chemical potential introduced in
the naive way (12.24) it reads

D(n|m) =
3∑

j=1

γj

δn+ĵ,m − δn−ĵ,m

2a
+ γ4

δn+4̂,m − δn−4̂,m

2aT

+mδnm + µγ4 δnm . (12.27)

For the evaluation of the determinant we Fourier transform D to momentum
space (cf. Appendix A.3) and obtain

D̃(p|q) =
1
|Λ|

∑

n,m∈Λ
e−ip·n D(n|m) eiq·m = δ(p − q)D̃(p) , (12.28)

with the Dirac operator in momentum space D̃ given by

D̃(p) =
1
aT



i
aT

a

3∑

j=1

γj sin(pja) + iγ4 sin(p4aT ) + aT m1 + aT µγ4



 .

(12.29)
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For the logarithm of the determinant needed in (12.26) we find (use (A.54))

ln (det[D]) = ln

(
∏

p

detd

[
D̃(p)

])
=

∑

p

ln
(
detd

[
D̃(p)

])

=
∑

p

ln
(
etrd[ln(D̃(p))]

)
=

∑

p

trd

[
ln
(
D̃(p)

)]
. (12.30)

We use the subscript d attached to the determinant and the trace to indicate
that both are computed only for the remaining 4× 4 matrices in Dirac space.

Using (12.26), (12.27), (12.28), (12.29), and (12.30) we obtain for the
derivative with respect to aT ,

∂

∂aT
ln (det[D])

∣∣∣
µaT =const

=
∑

p

trd

[
∂

∂aT
ln
(
D̃(p)

)] ∣∣∣∣
µaT =const

= C +
∑

p

trd




(
aT D̃(q)

)−1



 i

a

3∑

j=1

γj sin(pja) + m1







 , (12.31)

where the constant C is given by C = −4NT N3/aT . Evaluating the remaining
traces in Dirac space and inserting the result into (12.26) we find after setting
aT = a,

ε(µ) = C − 4
N3 NT a4

∑

p

F (ap, am, aµ) , (12.32)

with

F (ap, am, aµ) =
∑3

j=1 sin2(a pj) + (am)2
∑3

k=1 sin2(a pj) + (am)2 + (sin(a p4) − i aµ)2
. (12.33)

When computing the final result for the energy density we need to normalize
by removing the value for µ = 0, i.e., we consider ε(µ) − ε(0). We return
to zero temperature and, letting N = NT → ∞, we change to continuous
integration over momenta p:

1
N3 NT a4

∑

p

⇒ 1
(2π)4

∫ π

−π
d4p (12.34)

giving rise to

ε(µ) − ε(0) = − 4
(2π)4

∫ π

−π
d4p (F (ap, am, aµ) − F (ap, am, 0)) , (12.35)

where in F we have still kept a finite. Using a contour integral in the complex
p4-plane, the leading term in the limit a → 0 may be extracted. From the
p4 → 0 contribution one obtains the behavior

lim
a→0

(ε(µ) − ε(0)) ∝
(µ

a

)2
. (12.36)
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This is divergent in the continuum limit and thus simply adding the term
(12.24) in the action does not give rise to a proper discretization of the chem-
ical potential.

Closer inspection of the continuum situation (cf. [44–46]) clarifies the prob-
lem. The quark number is the conserved charge of the U(1) global symmetry.
Determining the Noether current for the lattice action gives the current ex-
pressed by nearest neighbor terms. The space integral then produces a suitable
form of the chemical potential term. One therefore implements the chemical
potential by replacing the temporal hopping term in (5.51) with

− 1
2a

∑

n∈Λ

(
f(aµ)(1− γ4)αβU4(n)abδn+4̂,m

+f(aµ)−1(1 + γ4)αβU4(n − 4̂)†abδn−4̂,m

)
,

(12.37)

where f(aµ) is a real function not yet specified.
For µ = 0 the original action should be recovered, thus we request f(0) = 1.

In an expansion in µ the next term should be linear in the chemical potential
in order to reproduce the density term. We therefore have f(aµ) = 1 + aµ +
O(aµ)2. Time reflection invariance (cf. Sect. 5.4) requires f(aµ) = 1/f(−aµ).
The simplest choice fulfilling all these conditions is

f(aµ) = exp(aµ) . (12.38)

In this formulation the propagation forward in time is favored by a factor of
exp(aµ), whereas propagation backward in time is disfavored by exp(−aµ).
This introduces the desired particle–antiparticle asymmetry.

In Sect. 5.3.1 we have shown that the hopping expansion expresses the
fermion determinant as a sum over closed loops. In such a loop the forward
hopping factors f(aµ) and the backward hopping factors f(aµ)−1 cancel unless
the loop winds nontrivially around the compact time direction. The total
contribution of the chemical potential then is f(aµ)wNT , where w ∈ Z denotes
the number of windings of the loop.

Based on that observation, we note that in a simulation instead of modi-
fying all link terms in time direction one may also modify just all forward
time-directed hopping terms in only a single time slice with the factor

f(aµ)NT = exp(aµNT ) = exp(µ/T ) , (12.39)

and the corresponding backward-oriented terms with the inverse factor. Like
in (12.20) we find that the chemical potential always enters in the form µ/T .

The introduction of the chemical potential comes with a serious technical
drawback: For aµ )= 0 the Dirac operator is no longer γ5-hermitian. It is easy
to see that multiplying the hopping term (12.37) with γ5 from the left and the
right changes the sign of γ4; hermitian conjugation then exchanges U and U†

and we find instead of the γ5-hermiticity relation (5.76) the modified equation
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γ5D(µ)γ5 = D†(−µ) . (12.40)

This, however, is no longer a symmetry transformation but leads to a term
with f replaced by 1/f∗. We find

γ5 D(f) γ5 = D† (1/f∗) ⇒ det[D(f)] = det [D (1/f∗)]∗ . (12.41)

This is an invariance operation only for f = 1/f∗. For real f one therefore
has f = 1/f = 1 which implies aµ = 0. Consequently for nonvanishing real
µ the determinant of the Dirac operator then is complex and one cannot
obtain a real Boltzmann weight by doubling the number of fermion flavors. A
nonvanishing real µ creates a particle–antiparticle asymmetry which destroys
the reality of the determinant and a straightforward application of importance
sampling.

It is interesting to notice, however, that for imaginary chemical potential
µ = iη, η ∈ R we have

f(i a η) = 1/f(i a η)∗ = 1/f(−i a η) . (12.42)

Then the Dirac operator is γ5-hermitian in the standard way and the de-
terminant is real [47–49]. Based on this observation one might try to work
at imaginary chemical potential and analytically continue to real values (cf.
Sect. 12.3.3).

Another special case is when one considers the so-called isospin chemical
potential µI [49, 50]. Let us introduce a chemical potential variable for each
flavor. In the Euclidean continuum Lagrangian this corresponds to terms

∑

f

µf ψf γ4 ψf , (12.43)

which may be translated to the lattice formulation as discussed above. Focus-
ing on two light flavors we may consider µu = µI and µd = −µI . The term in
the Lagrangian then has the form µI(u γ4 u − d γ4 d). In this case the Dirac
operators are block diagonal, where the blocks are the one-flavor operators
for the up and the down quark:

(
D(µI) 0

0 D(−µI)

)
=

(
D(µI) 0

0 γ5D†(µI) γ5

)
. (12.44)

In this step we have used (12.40). For mass-degenerate quarks the determinant
of this matrix is real and positive since

det[D(µI)] det[γ5 D†(µI) γ5] = det[D(µI)] det[D†(µI)] = |det[D(µI)]|2 .
(12.45)

This property allows one to study nonvanishing isospin chemical potential in
Monte Carlo simulations using the standard techniques discussed in Chap. 8.
Isospin chemical potential is not an academic problem, since one can imagine
such a situation in relativistic heavy ion collisions.
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There is also a definition of the overlap Dirac operator for nonvanishing
chemical potential [51, 52]. The kernel operator may be the usual Wilson
Dirac operator with chemical potential µ introduced as in (12.37), which is
then not γ5-hermitian. The sign function applied in the construction of Dov

(cf. Sect. 7.4) is a generalization to nonhermitian but diagonalizable opera-
tors, i.e., in the spectral representation (7.84) one takes the sign of the real
part of the complex eigenvalues. Dov(µ) is not γ5-hermitian for µ )= 0 but
inherits property (12.40). It is no longer normal and its eigenvalues are not
restricted to the Ginsparg–Wilson circle. However, eigenvectors ψ and γ5ψ
have still eigenvalues related by λ and λ/(λ−1). It was demonstrated [53, 54]
that this generalization reproduces correctly the thermodynamical properties
of a free Fermi gas. The exact manifestation of chiral symmetry on the lat-
tice in the presence of a nonvanishing chemical potential is still discussed,
however.

12.2.2 The QCD phase diagram in the (T, µ) space

The situation concerning details of the phase structure, like the exact position
of phase transitions and values of critical exponents, is yet to be settled.
Lattice results from different kinds of Dirac operators often disagree and the
numerics and statistics may not be sufficient. The phase structure discussed
here therefore can only represent the present minimal consensus [55, 56].

Figure 12.5 shows the situation for two massless quarks and for two light
quarks close to the physical mass. The temperature transition at µ = 0 has
been discussed in Sect. 12.1.2: For Nf = 2 it is either second order or weakly
first order. For increasing quark mass the transition weakens and eventu-
ally becomes a crossover. By introducing a light third dynamical quark the
phase transition becomes strong and the first-order line from the middle of
the phase diagram extends toward the µ = 0 region. If the mass of the
third quark increases, again the situation is that of the right-hand side plot
of Fig. 12.5.

There are no lattice results for zero temperature and nonvanishing real
chemical potential. Straightforward perturbative treatment of QCD at high
density fails as well [55]. Much of the information there comes from NJL-
inspired calculations [57], Dyson–Schwinger gap equations with various inter-
action models like the instanton liquid model [58] and random matrix models
[59, 60]. In the confinement phase one first has nuclear matter with (for two
massless flavors) a small transition line extending into the phase, which sepa-
rates between a resonance gas-like and a liquid-like structure. Model calcula-
tions then indicate a first-order transition between the nuclear matter region
for µB above 1 GeV and, at higher density, a (two-flavor) color superconduct-
ing phase (2SC), where the quarks pair in a flavor singlet color anti-triplet
channel [57, 58]. Adding a strange quark with a mass close to its physical
value the region around the phase transition may be more complicated, e.g.,
allowing for an intermediate pocket of a crystalline color superconducting
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Fig. 12.5. The conjectured phase diagram in the (T, µ)-plane for (l.h.s.) two mass-
less quarks and (r.h.s.) two mass-degenerate light quarks. Lattice calculations so
far have been useful only for small values of the chemical potential, attempting to
locate the tricritical point (l.h.s) or second-order endpoint (r.h.s.) of the first-order
phase transition line

phase. However, all calculations agree that for larger µ one eventually enters
a color–flavor-locked (CFL) phase with a nonvanishing diquark condensate
[61].

Lattice results so far have been confined to a strip close to vanishing chem-
ical potential, typically µ/T < 1. All methods have been based on analytic
continuation from µ = 0 or imaginary µ to nonvanishing µ. Of particular im-
portance for heavy ion collisions is whether the physical situation is close to
a crossover or phase transition line and in what phase one ends up in various
experiments.

12.3 Chemical potential: Monte Carlo techniques

The quest for the optimal simulation strategy for nonvanishing chemical po-
tential is far from being settled. We therefore refrain from trying to cover all
results available but just discuss the underlying concepts. All approaches so
far have analytically continued results obtained from measurements for real
determinants to the actual parameter values one is interested in. There have
been two groups of such extrapolations:

• Using measurements at µ = 0 and extrapolating with the help of reweight-
ing or power series in µ/T (moment expansion).

• Using results determined for purely imaginary µ (negative µ2) and an-
alytic continuation to real µ (positive µ2) via a power series and Padé
rational expansion or reconstruction of the fugacity expansion coefficients
via Fourier transformation.

Quenched simulations [62–64] first led to confusing results. It was found
that the critical value of µ decreased with the pion mass: µc ∝ mπ/2, which
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would vanish in the chiral limit. On the other hand at zero temperature one
expects that the transition is near µc 0 mp/3, since the proton is the lightest
state with nonvanishing baryon number. Stephanov [65] has pointed out that
for µ )= 0 the quenched theory is not the Nf → 0 limit of QCD but of a theory
with Nf quarks and Nf conjugate quarks. This implies that for a simulation
the phase of the quark determinant is of importance and dynamical fermions
are necessary to obtain µc 0 mp/3. Most simulations in that context are
therefore done with dynamical fermions, mainly of the staggered type.

Large temperature T 1 Tc corresponds to very small time extension and
one expects that the system approaches effectively a 3D gauge theory. The
temporal loops then play the role of an adjoint Higgs field [66, 67]. This dimen-
sional reduction opens the way for Monte Carlo studies of the effective theory
including chemical potential [68–71]. We restrict our discussion to methods
for the full 4D system.

12.3.1 Reweighting

Reweighting is a standard tool in Monte Carlo approaches for statistical spin
systems and has been successfully used to improve interpolation between
Monte Carlo results at different couplings and for analytical continuation from
real to complex couplings. It has been particularly useful for determining the
positions of partition function zeroes for complex couplings (Lee–Yang zeroes
and Fisher zeroes).

The strategy may be understood as a more general concept which we
discuss here briefly for a simple bosonic system. The partition function is
rewritten as a sum over the possible values of the total energy of the system:

Z(κ) ≡
∫
D[Φ] e−κS[Φ] =

∫
dE

∫
D[Φ] δ(E − S[Φ]) e−κS[Φ]

=
∫

dE ρ(E) e−κE with ρ(E) =
∫
D[Φ] δ(E − S[Φ]) .

(12.46)

In this way the energy distribution density ρ(E) may be obtained with high
precision by combining Monte Carlo results from different values of the cou-
pling – the so-called multi-histogram technique [72, 73]. Once the density of
states ρ(E) is known, Z(κ) and its derivatives can be computed for any value
of the coupling κ. This is correct, however, only if the energy distribution is
known to arbitrary precision. In realistic simulations this is not the case and
therefore the technically crucial point is how much the distribution generated
from Monte Carlo runs at some couplings overlaps with that at some other
values of the coupling where one wants to compute Z.

In the spirit of using the determinant as a weight factor one may use the
deviation of det[D(µ)] from det[D(0)] as a reweighting factor. From
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〈
e−SG[β′,U ] det[D(µ′, U)]
e−SG[β,U ] det[D(µ,U)]

〉

β,µ

=
1

Z(β, µ)

∫
D[U ]

e−SG[β′,U ] det[D(µ′, U)]
e−SG[β,U ] det[D(µ,U)]

e−SG[β,U ] det[D(µ,U)]

=
1

Z(β, µ)

∫
D[U ] e−SG[β′,U ] det[D(µ′, U)] = Z(β′, µ′)/Z(β, µ),

(12.47)
we find that we may, at least in theory, determine Z(β′, µ′) from results eval-
uated at β and µ. We therefore could obtain values for

Z(β′, µ′) = Z(β, µ)

〈
e−SG[β′,U ] det[D(µ′, U)]
e−SG[β,U ] det[D(µ,U)]

〉

β,µ

. (12.48)

(In these equations β denotes the inverse gauge coupling, not the inverse
temperature.) Since in a Monte Carlo sampling the configurations are obtained
with probabilities determined by the values of β and µ, the results crucially
depend on how far one wants to extrapolate. Studying the finite temperature
phase transition one then samples around (β = βc, µ = 0), where βc denotes
the value of the gauge coupling for which aNT = 1/Tc.

The technical issue is the overlap of the ensemble sampled at β, µ with
the actual ensemble at the target couplings β′, µ′, and the resulting statisti-
cal reliability. The difference in the total free energy grows with the lattice
volume rendering the extrapolation for larger lattice sizes more problematic.
With increasing chemical potential it becomes worse and the predictive power
poorer.

The first attempts have kept the gauge coupling fixed [62, 64] and extrapo-
lated from simulation at vanishing chemical potential to a nonvanishing value
for small lattices.

Fodor and Katz [74, 75] extrapolate by reweighting in both variables, the
gauge coupling and the chemical potential, sampling at the transition point
(β = βc, µ = 0), following the pseudo-critical line. This strategy appears
to improve the approximation and was applied on small lattices. Analyzing
the complex (Lee–Yang) zeroes of the partition function allows one to lo-
cate the endpoint of the expected first-order transition line. In a simulation
with 2+1-staggered quarks near their physical mass values the point was esti-
mated to lie at µE

c ≈ 120(13) MeV at T ≈ 162(2) MeV [76], corresponding to
µE

c /T ≈ 0.75.
A systematic check of the convergence properties of the reweighting ap-

proach is possible for imaginary chemical potential which can be simu-
lated by standard methods. For a critical assessment of such a comparison,
cf. [77–79].
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12.3.2 Series expansion

The chemical potential always enters in the combination µ/T . In another
method of extrapolation one therefore writes the physical observables as a
power series in µ/T . Time-reversal invariance of the gauge configuration en-
semble (compare Sect. 5.4) provides the symmetry

Z(µ/T ) = Z(−µ/T ) . (12.49)

Thus Z and observables that are symmetric under time reflection are even
functions in µ/T and the expansion will be in even powers (µ/T )2. The pres-
sure density (12.18) in a homogeneous system is p = (T/V ) ln Z. The corre-
sponding Taylor–McLaurin series then is even in µ and reads

p = T 4
∞∑

n=0

c2n(T )
( µ

T

)2n
, (12.50)

where the coefficients are derivatives of the free energy F = − ln(Z)/β and
therefore generalized quark number susceptibilities, evaluated for vanishing µ
[80–83].

The coefficient of the quadratic term in (12.50) is the quark number sus-
ceptibility at µ = 0. It is a derivative of the quark number density (12.23) and
a second derivative of the fermion determinant with respect to the chemical
potential,

χq =
∂nq

∂µ
=

T

V

∂2 lnZ

∂µ2
. (12.51)

Such derivatives involve traces like
∂ ln det[D]

∂µ
= tr

[
D−1 ∂D

∂µ

]
(12.52)

and higher derivatives (cf. [83]). These are evaluated in a similar way as has
been discussed in the context of the fermionic force in (8.44) and (8.47).
The trace is evaluated with the help of stochastic estimators as discussed in
Sect. 8.4. The coefficients in (12.50) are determined in simulations at µ = 0.

In the thermodynamic limit phase transitions will be associated with sin-
gularities in some observables. The coefficients of the expansion can be used
to estimate the position of the closest singularity. The quark number suscep-
tibility exhibits a pronounced peak at the transition [84]. Finite size scaling
considerations then may give hints on the type of phase transition or crossover.
Several groups (in particular [82–86]) have analyzed the quark number sus-
ceptibility and other expansion coefficients in this way.

12.3.3 Imaginary µ

In (12.42) we have noted that for imaginary chemical potential µ = iη, η ∈ R,
the Dirac operator is γ5-hermitian and the determinant is real. Then stan-
dard importance sampling techniques can be applied like for the case without
chemical potential.
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The chemical potential enters the partition function through the factors
exp(±iη/T ) as can be seen from (12.39). Thus thermodynamic functions are
2π-periodic in η/T and we can restrict η/T to the interval [0, 2π).

Let us discuss the analytic structure in the complex z-plane [87] where

z ≡ (µ/T )2 = −(η/T )2 . (12.53)

Dynamical fermions break the Z3 symmetry of the pure gauge theory (see
Sect. 12.1.2). However, the effect of a Z3 transformation on the fermion fields
can be compensated by a shift in the complex chemical potential, thus leading
to a new symmetry. This implies a periodicity in the imaginary part of the
chemical potential,

Z(η/T ) = Z(η/T + 2π/3) . (12.54)
Thus the interval η/T ∈ [0, 2π) is split into three equivalent sectors dis-

tinguished only by the phase of the Polyakov loop. For imaginary chemical
potential there are Z3 transitions of first order at the boundaries of the sectors
and crossover lines above a certain temperature [88, 89]. These singularities
limit the domain of convergence for the series to roughly |µ/T | ≤ 1.

One can directly simulate the theory at such negative z-values, i.e., imag-
inary chemical potential µ = iη, and attempt to extrapolate the results to
positive z [88–92]. Analytic continuation may be performed in several ways.
The simplest approach is a power series in z, which converges in a circular
domain |z − z0| < R, where R is the distance to the closest singularity. A
standard method in the theory of analytic functions is to perform a sequence
of expansions around points located suitable in the convergence domain of
the preceding series. Other methods involve optimal mappings or Padé ex-
pansions. The latter is a systematic method to replace the power series by
that rational function which has identical expansion coefficients.

A straightforward approach is to fit the simulation results at several val-
ues of z to a power series as in (12.50). The Taylor expansion has the same
convergence properties as shown for the pressure in [81, 83]. It turns out that
convergence is rapid for several observables studied, like the chiral conden-
sate and screening masses [69], as well as the position of the crossover (the
pseudo-critical temperature) [79, 88, 89, 92]. Padé approximants may allow
extension of the extrapolation range [93] beyond the convergence circle of the
power series.

Another extension to complex values of µ introduces variables cosh(µa)
and sinh(µa) [94, 95], with subsequent analytic extrapolation to real chemical
potential. The results for the position of the crossover are in agreement with
the above-mentioned work.

12.3.4 Canonical partition functions

For imaginary chemical potential the fugacity expansion of the grand canon-
ical partition function (12.22) is a Fourier sum [47, 48] and periodic in η/T
with a period of 2π,
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Z(T, i η) =
∑

n

ei n η/T Zn(T ) . (12.55)

This sum may be inverted leading to the following expression for the canonical
partition functions Zn(T ) at a fixed quark number n:

Zn(T ) =
1
2π

∫ π

−π
d(η/T ) e−i n η/T Z(T, i η) . (12.56)

Equation (12.56) thus is an exact expression for the coefficients Zn of the
fugacity expansion (12.22).

Simulations at imaginary chemical potential can be used to determine val-
ues for Z(T, iη)/Z(T, 0) and thus in principle the Fourier integral (12.56) for
the Zn can be evaluated numerically. A problem is the oscillations of the
Fourier sum which increase with the quark number n, such that at higher
values of |n| many intermediate points of η/T in the interval [−π, π] are nec-
essary for a reliable numerical estimate of the Fourier integral. Combinations
of multi-histogram sampling and other intricate methods can be used to deter-
mine Zn and then, via (12.22), Z(T, µ) [78, 96–101]. An alternative approach
that has been explored recently [102, 103] is perturbative techniques for the
evaluation of the Zn.

Studying the canonical partition function is particularly suitable to ex-
plore few nucleon systems at low temperature, and in principle, allows one to
study the bulk properties of nuclear matter and the nuclear interactions. The
metastable region is nicely exhibited and a Maxwell construction relates this
signal to the grand canonical results. Nice agreement of these results from
this approach with other approaches discussed earlier has been demonstrated
[98]. The results so far have been on small lattices. Fixing the baryon density,
though, requires to increase n for increasing volumes. This may be a problem
for the necessary statistics of the simulations.
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A

Appendix

A.1 The Lie groups SU(N)

In this appendix we collect basic definitions and conventions for the Lie groups
SU(N) – the special unitary groups – and the corresponding Lie algebras
su(N). For a more detailed presentation we refer the reader to [1–3].

A.1.1 Basic properties

The defining representation of SU(N) is given by complex N × N matrices
which are unitary and have determinant 1. This set of matrices is closed under
matrix multiplication: Let Ω1 and Ω2 be elements of SU(N), i.e., they obey
Ω†

i = Ω−1
i and det[Ωi] = 1. Using standard linear algebra manipulations we

obtain

(Ω1Ω2)† = Ω†
2Ω

†
1 = Ω−1

2 Ω−1
1 = (Ω1Ω2)−1 ,

det[Ω1Ω2] = det[Ω1] det[Ω2] = 1 (A.1)

and have thus established that also the product of two SU(N) matrices is
an SU(N) matrix. The unit matrix is also in SU(N) and for each matrix in
SU(N) there exists an inverse (the hermitian conjugate matrix). Thus, the set
SU(N) forms a group. Since the group operation – the matrix multiplication –
is not commutative the groups SU(N) are non-abelian groups.

A.1.2 Lie algebra

Let us now count how many real parameters are needed to describe the ma-
trices in SU(N). A complex N × N matrix has 2N2 real parameters. The
requirement of unitarity introduces N2 independent conditions which the pa-
rameters have to obey. One more parameter is used for obeying the deter-
minant condition such that one needs a total of N2 − 1 real parameters for
describing SU(N) matrices.

Gattringer, C., Lang, C.B.: Appendix. Lect. Notes Phys. 788, 327–336 (2010)
DOI 10.1007/978-3-642-01850-3 BM2 c© Springer-Verlag Berlin Heidelberg 2010
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A convenient way of representing SU(N) matrices is to write them as
exponentials of basis matrices Tj , the so-called generators. In particular, we
write an element Ω of SU(N) as

Ω = exp



i
N2−1∑

j=1

ω(j) Tj



 , (A.2)

where ω(j), j = 1, 2, . . . , N2 − 1, are the real numbers needed to parame-
terize Ω. We remark that the parameters ω(j) can be changed continuously,
making SU(N) so-called Lie groups that are groups whose elements depend
continuously on their parameters. In order to cover all of the group space,
the parameters have to be varied only over finite intervals, making the groups
SU(N) so-called compact Lie groups.

The generators Tj , j = 1, 2, . . . , N2 − 1, are chosen as traceless, complex,
and hermitian N × N matrices obeying the normalization condition

tr [Tj Tk] =
1
2
δjk . (A.3)

In addition, they are related among each other by an algebra of commutation
relations

[Tj , Tk ] = i fjkl Tl . (A.4)

The completely anti-symmetric coefficients fjkl are the so-called structure
constants. Below we will give an explicit representation of the generators for
the groups SU(2) and SU(3).

Let us verify that the representation (A.2) indeed describes elements of
SU(N). Using the facts that the generators are hermitian and that the ω(j)

are real, one finds that hermitian conjugation of the right-hand side of (A.2)
simply produces an extra minus sign in the exponent (from the complex con-
jugation of i). Thus, it is obvious that (A.2) implies Ω† = Ω−1. To show that
the determinant equals 1, we use the equation

detΩ = exp (tr [lnΩ]) = exp



i
N2−1∑

j=1

ω(j) tr Tj



 = e0 = 1 , (A.5)

where in first step we have used a formula for the determinant (see (A.54)
below) and in the third step we have used the fact that the Tj are traceless.

Not only the group elements but also the exponents of our representation
(A.2) have an interesting structure. The linear combinations

N2−1∑

j=1

ω(j) Tj (A.6)

of the Tj form the so-called Lie algebra su(N). Their commutation properties
are governed by the relations (A.4). Elements of su(N) are also complex N×N
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matrices but have properties different from the elements of the group. One
important difference is the fact that the unit matrix is contained in the group
(all ω(j) = 0), while it is not an element of the algebra (all Tj are traceless).

A.1.3 Generators for SU(2) and SU(3)

The standard representation of the generators for SU(2) is given by

Tj =
1
2
σj , (A.7)

with the Pauli matrices

σ1 =
[

0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]
. (A.8)

In this case the structure constants are particularly simple, given by the com-
pletely anti-symmetric tensor, i.e., fjkl = εjkl.

For SU(3) the generators are given by

Tj =
1
2
λj . (A.9)

The Gell–Mann matrices λj are 3 × 3 generalizations of the Pauli matrices:

λ1 =




0 1 0
1 0 0
0 0 0



 , λ2 =




0 −i 0
i 0 0
0 0 0



 , λ3 =




1 0 0
0 −1 0
0 0 0



 ,

λ4 =




0 0 1
0 0 0
1 0 0



 , λ5 =




0 0 −i
0 0 0
i 0 0



 , λ6 =




0 0 0
0 0 1
0 1 0



 ,

λ7 =




0 0 0
0 0 −i
0 i 0



 , λ8 =
1√
3




1 0 0
0 1 0
0 0 −2



 . (A.10)

A.1.4 Derivatives of group elements

Let us now show an important property of derivatives of group elements. If
Ω(ω) is an element of SU(N) then

Mk(ω) = i
∂Ω(ω)
∂ω(k)

Ω(ω)† ∈ su(N) , (A.11)

i.e., the derivative times the hermitian conjugate is in the Lie algebra. In order
to prove this statement we have to show the defining properties of Lie algebra
elements, i.e., we must show that Mk(ω) is hermitian and traceless.

Showing the hermiticity of Mk(ω) is straightforward. By differentiating
Ω(ω)Ω(ω)† = 1 with respect to ω(k) one finds
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∂Ω(ω)
∂ω(k)

Ω(ω)† + Ω(ω)
∂Ω(ω)†

∂ω(k)
= 0 . (A.12)

Thus

Mk(ω)† =
(

i
∂Ω(ω)
∂ω(k)

Ω(ω)†
)†

= −iΩ(ω)
∂Ω(ω)†

∂ω(k)
= i

∂Ω(ω)
∂ω(k)

Ω(ω)† = Mk(ω) ,

(A.13)
where we used (A.12) in the third step.

In order to show that Mk(ω) is traceless we use the fact that the deter-
minant of a SU(N) matrix equals to 1 and we differentiate det[Ω(ω)] with
respect to ω(k). We obtain

0 =
∂ det[Ω(ω)]
∂ω(k)

=
∂ det[Ω(ω)]
∂Ω(ω)ab

∂Ω(ω)ab

∂ω(k)

= det[Ω(ω)]
(
Ω(ω)−1

)
ba

∂Ω(ω)ab

∂ω(k)
= tr

[
∂Ω(ω)
∂ω(k)

Ω(ω)†
]

, (A.14)

where in the first step we applied the chain rule for derivatives. In the second
step we used a standard formula for the derivative of the determinant det[Ω]
with respect to an entry Ωab of the matrix Ω. In the third step we used
det[Ω] = 1 and Ω−1 = Ω†. Equation (A.14) establishes that Mk(ω) is also
traceless and thus we have shown Mk(ω) ∈ su(N).

From (A.11) it follows that for the gauge transformation matrices Ω(x)
with coefficients ω(k)(x), depending on the space–time coordinate x, the com-
bination i (∂µΩ(x))Ω(x)† is in the Lie algebra, since

i (∂µΩ(x))Ω(x)† =
∑

k

(
i
(

∂

∂ω(k)(x)
Ω (ω(x))

)
Ω (ω(x))†

)
∂µω

(k)(x) ,

(A.15)
and the right-hand side is a linear combination of su(N) elements with real
coefficients ∂µω(k)(x).

A.2 Gamma matrices

The Euclidean gamma matrices γµ, µ = 1, 2, 3, 4 can be constructed from the
Minkowski gamma matrices γM

µ , µ = 0, 1, 2, 3. The latter obey

{γM
µ , γM

ν } = 2 gµν 1 , (A.16)

with the metric tensor given by gµν = diag(1,−1,−1,−1) and 1 is the 4 × 4
unit matrix. Thus when we define the Euclidean matrices γµ by setting

γ1 = −iγM
1 , γ2 = −iγM

2 , γ3 = −iγM
3 , γ4 = γM

0 , (A.17)

we obtain the Euclidean anti-commutation relations
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{γµ, γν} = 2 δµν 1 . (A.18)

In addition to the matrices γµ, µ = 1, 2, 3, 4 we define the matrix γ5 as the
product

γ5 = γ1γ2γ3γ4 . (A.19)
The matrix γ5 anti-commutes with all other gamma matrices γµ, µ = 1, 2, 3, 4
and obeys γ2

5 = 1.
An explicit representation of the Euclidean gamma matrices can be ob-

tained from a representation of the Minkowski gamma matrices (see, e.g., [4]).
Here we give the so-called chiral representation where γ5 (the chirality oper-
ator) is diagonal:

γ1,2,3 =
[

0 −iσ1,2,3

iσ1,2,3 0

]
, γ4 =

[
0 12

12 0

]
, γ5 =

[
12 0
0 −12

]
, (A.20)

where the σj are the Pauli matrices (A.8) and 12 is the 2 × 2 unit matrix.
More explicitely the Euclidean gamma matrices read

γ1 =





0 0 0 −i
0 0 −i 0
0 i 0 0
i 0 0 0



, γ2 =





0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0



, γ3 =





0 0 −i 0
0 0 0 i
i 0 0 0
0 −i 0 0



 ,

γ4 =





0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0



 , γ5 =





1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1



 . (A.21)

In addition to the anti-commutation relation (A.18) the gamma matrices obey
(here µ = 1, . . . , 5)

γµ = γ†µ = γ−1
µ . (A.22)

When we discuss charge conjugation, we need the charge conjugation ma-
trix C defined through the relations (µ = 1, . . . , 4)

CγµC−1 = −γT
µ . (A.23)

Using the explicit form (A.21) it is easy to see that in the chiral representation
(A.20) the charge conjugation matrix is given by

C = iγ2γ4 . (A.24)

It obeys
C = C−1 = C† = −CT . (A.25)

We finally quote a simple formula for the inverse of linear combinations of
gamma matrices (a, bµ ∈ R):

(
a1 + i

4∑

µ=1

γµbµ

)−1

=
a1− i

∑4
µ=1 γµbµ

a2 +
∑4

µ=1 b2
µ

. (A.26)

This formula can be verified by multiplying both sides with a1 + i
∑

µ γµbµ.
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A.3 Fourier transformation on the lattice

The goal of this appendix is to discuss the Fourier transform f̃(p) of functions
f(n) defined on the lattice Λ. The lattice is given by

Λ = {n = (n1, n2, n3, n4) | nµ = 0, 1, . . . Nµ − 1} , (A.27)

and in most of our applications we have N1 = N2 = N3 = N , N4 = NT . For
the total number of lattice points we introduce the abbreviation

|Λ| = N1 N2 N3 N4 . (A.28)

We impose toroidal boundary conditions

f(n + µ̂Nµ) = ei2πθµf(n) (A.29)

for each of the directions µ. Here µ̂ denotes the unit vector in µ-direction. Di-
rections with periodic boundary conditions have θµ = 0, anti-periodic bound-
ary conditions correspond to θµ = 1/2.

The momentum space Λ̃, which corresponds to the lattice Λ with the
boundary conditions (A.29), is defined as

Λ̃ =
{

p = (p1, p2, p3, p4) | pµ =
2π

aNµ
(kµ + θµ), kµ = −Nµ

2
+ 1, . . . ,

Nµ

2

}
.

(A.30)
The boundary phases θµ have to be included in the definition of the momenta
pµ such that the plane waves

exp( i p · na) with p · n =
4∑

µ=1

pµnµ (A.31)

also obey the boundary conditions (A.29).
The basic formula, underlying Fourier transformation on the lattice, is

(here l is an integer with 0 ≤ l ≤ N − 1)

1
N

N/2∑

j=−N/2+1

exp
(

i
2π
N

lj

)
=

1
N

N−1∑

j=0

exp
(

i
2π
N

lj

)
= δl0 . (A.32)

For l = 0 this formula is trivial. For l &= 0 (A.32) follows from applying the
well-known algebraic identity

N−1∑

j=0

qj =
1 − qN

1 − q
to q = exp

(
i
2π
N

l

)
. (A.33)

We can combine four of the 1D sums in (A.32) to obtain the following iden-
tities:
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1
|Λ|

∑

p∈Λ̃

exp (i p · (n−n′)a) = δ(n − n′) = δn1n′
1
δn2n′

2
δn3n′

3
δn4n′

4
, (A.34)

1
|Λ|

∑

n∈Λ

exp (i(p−p′) · na) = δ(p − p′) ≡ δk1k′
1
δk2k′

2
δk3k′

3
δk4k′

4
. (A.35)

We stress that the right-hand side of (A.35) is a product of four Kronecker
deltas for the integers kµ which label the momentum components pµ(compare
(A.30)).

If we now define the Fourier transform

f̃(p) =
1√
|Λ|

∑

n∈Λ

f(n) exp (−i p · na) , (A.36)

we find for the inverse transformation

f(n) =
1√
|Λ|

∑

p∈Λ̃

f̃(p) exp (i p · na) . (A.37)

The last equation follows immediately from inserting (A.36) in (A.37) and
using (A.34).

A.4 Wilson’s formulation of lattice QCD

In this appendix we collect the defining formulas for Wilson’s formulation
of QCD on the lattice. The dynamical variables are the group-valued link
variables Uµ(n) and the Grassmann-valued fermion fields ψ(f)(n)α

c
, ψ

(f)
(n)α

c
.

They live on the links, respectively the sites of our lattice (A.27). Vacuum
expectation values are calculated according to

〈O〉 =
1
Z

∫
D

[
ψ,ψ

]
D[U ] e−SF [ψ,ψ,U ]−SG[U ] O[ψ,ψ, U ] , (A.38)

where the partition function is given by

Z =
∫

D
[
ψ,ψ

]
D[U ] e−SF [ψ,ψ,U ]−SG[U ] . (A.39)

The measures over fermion and gauge fields are products over the measures
for the individual field variables:

D
[
ψ,ψ

]
=

∏

n∈Λ

∏

f,α,c

dψ(f)(n)α
c

dψ
(f)

(n)α
c

, D[U ] =
∏

n∈Λ

4∏

µ=1

dUµ(n) .

(A.40)
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For the individual link variables Uµ(n) one uses the Haar measure discussed in
Sect. 3.1. For the fermions the rules for Grassmann integration from Sect. 5.1
apply. The gauge field action for gauge group SU(N) is given by

SG[U ] =
β

N

∑

n∈Λ

∑

µ<ν

Re tr [1− Uµν(n)] , (A.41)

where the plaquettes are defined as

Uµν(n) = Uµ(n)Uν(n + µ̂)U−µ(n + µ̂ + ν̂)U−ν(n + ν̂)
= Uµ(n)Uν(n + µ̂)Uµ(n + ν̂)† Uν(n)† . (A.42)

The fermion action is a sum over Nf flavors:

SF [ψ,ψ, U ] =
Nf∑

f=1

a4
∑

n,m∈Λ

ψ
(f)

(n)D(f)(n|m)ψ(f)(m) (A.43)

and the lattice Dirac operator is given by

D(f)(n|m)α β
a b

=
(
m(f) +

4
a

)
δαβ δab δn,m− 1

2a

±4∑

µ=±1

(1− γµ)αβ Uµ(n)ab δn+µ̂,m .

(A.44)
In (A.42) and in the last equation we use the conventions

γ−µ = −γµ , U−µ(n) = Uµ(n − µ̂)† , µ = 1, 2, 3, 4 . (A.45)

We remark that Wilson’s Dirac operator (A.44) is γ5-hermitian, i.e., it obeys

γ5 Dγ5 = D† . (A.46)

A.5 A few formulas for matrix algebra

In quantum mechanics one usually deals with hermitian or unitary matrices,
while in lattice QCD often more general matrices occur. In this appendix we
list a few results for general complex matrices together with short remarks
concerning their proof (for a more detailed account see, e.g., [5]).

The basic result for general complex matrices is that they are unitarily
equivalent to upper triangular matrices: Let M be a complex-valued N × N
matrix. Then there exits a unitary matrix U and an upper triangular matrix
T , such that

U† M U = T . (A.47)

This result can be proven by induction in N . The elements tj on the diagonal
of T are the roots of the characteristic polynomial of M since
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P (λ) = det[M − λ1] = det[T − λ1] =
N∏

j=1

(tj − λ) . (A.48)

An important consequence of this result is a unique classification of ma-
trices that can be diagonalized with a unitary transformation. A complex
matrix M is called normal if it commutes with its hermitian conjugate, i.e.,
[M,M†] = 0. It is obvious that hermitian or unitary matrices are normal. The
announced result is: If and only if M is normal, then there exists a unitary
matrix U such that

U† M U = D , (A.49)

where D is diagonal. It is straightforward to see that a matrix M which is
unitarily equivalent to a diagonal matrix is normal. To prove the other di-
rection we first note that the normality of M implies the normality of the
triangular matrix T corresponding to M . When evaluating explicitly the two
sides of the normality condition, T †T = TT †, for the upper triangular ma-
trix T , one concludes that T must be diagonal and the statement is proven.
Equations (A.49) and (A.48) imply that a normal matrix has a complete set
of orthonormal eigenvectors, the columns of U .

The existence of a complete orthonormal set of eigenvectors v(j) with eigen-
values λ(j) can be used to represent the matrix M in the form

M =
N∑

j=1

λ(j) v(j) v(j)† , (A.50)

the so-called spectral representation. On the right-hand side of this equation
matrix/vector notation was used to write the dyadic product v(j)v(j)†. The
spectral representation of the matrix can be used to define a function of M in
terms of the function for the eigenvalues, if this exists. This gives rise to the
spectral theorem

f (M) =
N∑

j=1

f
(
λ(j)

)
v(j) v(j)† . (A.51)

We finally discuss a formula for the expansion of the determinant:

det[1− M ] = exp (tr[ ln(1− M) ] ) . (A.52)

In this equation M is a complex matrix and the logarithm (where it exists) is
defined through its series expansion. The proof of (A.52) applies (A.47):

det[1− M ] = det[1− T ] =
N∏

j=1

(1 − tj) = exp




N∑

j=1

ln (1 − tj)



 (A.53)

= exp



−
N∑

j=1

∞∑

n=1

1
n

(tj)n



 = exp

(
−

∞∑

n=1

1
n

tr[Tn]

)
= exp (tr[ln(1− M)] ) .
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In the fifth step we have used the fact that when evaluating powers of a
triangular matrix the diagonal elements do not mix with other entries of the
matrix. In the last step we used tr[Tn] = tr[Mn] which follows from (A.47).

Since a matrix A may always be written as A = 1− M , the result (A.52)
is often stated as

det[A] = exp (tr[ lnA ] ) . (A.54)
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lattice spacing, 65, 66
lattice units, 144, 151
leapfrog integration, 192
Legendre transformation, 11
Lie algebra, 327, 328
Lie group, 44, 327, 328

compact, 328
Haar measure, 45

link variable, 33
locality, 178
low energy constants, 267, 278

Markov chain, 73, 75
mass

AWI, 220, 279
bare, 279
PCAC, 220, 279
residual, 279
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Maxwell construction, 323
measure, 20

gauge field, 44
Haar, 44, 45

meson
correlator, 127
interpolator, 124
operator, 124
quantum numbers, 124

Metropolis algorithm, 78
gauge action, 79

microcanonical, 85
molecular dynamics, 191

leapfrog, 191
trajectory, 192

momentum projection, 131
Monte Carlo method, 74

for SU(3), 80
Monte Carlo step, 76
Monte Carlo update, 76
multi-histogram technique, 319
multi-hit algorithm, 80
multi-mass solver, 141
multi-particle state, 3
multi-pseudofermions, 201

n-point function, 110
naive currents, 274
naive fermion action, 32, 34, 110
natural units, 151
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Nielsen-Ninomiya theorem, 162
Noether current, 159, 273, 275
noisy estimator, 203
noisy pseudofermions, 188, 203

estimators, 188
non-abelian group, 28, 327
non-leptonic weak decays, 296
non-singlet Axial Ward identity, 273
norm, 115
normal matrix, 167, 335
NRQCD, 260, 263
nucleon, 129
numerical simulation, 73

operator, 2
adjoint, 2
self-adjoint, 2
sink, 131
source, 131
trace, 3

operator product expansion, 267, 290,
295

Osterwalder-Schrader reconstruction,
21

overlap fermions, 164, 177, 316
overlap operator, 177

eigenmode reduction, 180, 182
numerics, 179
polynomial approximation, 180
rational approximation, 182
Zolotarev approximation, 181

overrelaxation, 85, 88

parity, 119
partial conservation of axial current, see

PCAC
partial quenching, 134
partial-global update, 190, 200
particle–anti-particle asymmetry, 316
partition function, 4, 16, 20
parton distributions, 290
path integral, 1, 16
path integral quantization, 7, 19, 21
Pauli matrices, 329
Pauli principle, 40
Pauli term, 216
Pauli-Villars fields, 252
PCAC, 219, 268, 270
PCAC-mass, 220, 279

phase diagram, 205, 317
Ginsparg-Wilson fermions, 208
Wilson fermions, 206

phase shift, 287
phase transitions, 205
physical units, 151
pion decay constant, 270
pion field normalization, 269
pion field operator, 268
pion form factor, 290
plane wave, 8, 14
plaquette, 37
point source, 136
polar mass, 255
Polyakov loop, 54, 57, 304, 305, 307
polynomial HMC, 200
Pontryagin index, 169
potential

static, 43, 54, 56, 58, 64, 99
preconditioning, 141
pressure, 310
propagator

quark, 112, 114
pseudo heat bath

for SU(3), 88
pseudofermion fields, 188, 252
pseudofermions, 187, 188

noisy, 203
pure gauge theory, 43

QCD
continuum action, 25

QCD phase diagram, 317
Quantum Chromodynamics, see QCD
quark fields, 26
quark number, 312

density, 312
quark propagator, 112, 141

continuum limit, 112
hopping expansion, 114

quark sources, 135
quark-gluon plasma, 310
quenched approximation, 133, 153, 185
quenching

partial, 134

R-algorithm, 199
random number generator, 84
rational approximation, 182
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rational HMC, 200
real space renormalization group, 227
reflection

Euclidean, 119, 120
time, 120

regularization independent scheme, 281
renormalization, 281
renormalization constants, 268, 279
renormalization group, 67, 213, 227

equation, 232, 233
flow, 231

residual mass, 279
resonance, 287
resonance decay, 284, 289
reversibility, 192
reweighting method, 319
RI scheme, 281
RI/MOM scheme, 281
Rome-Southampton method, 281
rotational invariance, 56
running coupling, 67

saddle point, 232
scalar field theory, 10
scalar product, 2
scale setting, 63, 65, 151
scaling, 67
scaling analysis, 69
scattering, 287

amplitude, 287
phase shift, 287

Schrödinger functional, 220
Schwarz alternating procedure, 203
screening masses, 311
sea quarks, 133, 134
selection probability, 190
self interaction, 31
self-adjoint operator, 2
sequential source method, 292
series expansion, 321
Sheikholeslami-Wohlert coefficient, 216
simple sampling, 74
simulation, 89

fermions, 185, 190
pure gauge theory, 73

smeared source, 137
smearing, 142, 248

APE, 142
HYP, 143

stout, 143
smearing functions, 137
smoothing, 142
Sommer parameter, 64–66, 151
source

extended, 136
point, 136
quark, 135
smeared, 137

spectral theorem, 335
spectroscopy, 123
spin system, 22
staggered Dirac operator, 248
staggered fermions, 199, 243, 244

tastes, 245
staggered transformation, 244
standard deviation, 94
staples, 79
static potential, 43, 54, 56, 58, 64, 99

Coulomb part, 62
parametrization, 59
strong coupling expansion, 59

statistical analysis, 93
statistical bootstrap, 97
statistical mechanics, 22
step scaling function, 264
stochastic differential equation, 85
stout-smearing, 143
strange quark mass, 151
string breaking, 63, 307
string tension, 59, 62
strong coupling expansion, 59
structure constants, 328
structure functions, 267
SU(N)

gauge group, 69
generators, 329
group integrals, 49
Lie group, 327

SU(2)
Haar measure, 86
random element, 83
representation, 81
unitarization, 82

SU(3), 28
group integrals, 46
random element, 84
representation, 81
unitarization, 82
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susceptibility, 310
sweep, 91
Symanzik improvement, 213–215
symmetries, 236

γ5-hermiticity, 121, 135, 166, 167,
187, 201, 202

charge conjugation, 117
parity, 119
reflection, 119

tadpole improvement, 219
tastes of staggered fermions, 245, 248
temperature, 301

deconfinement phase, 310
phase diagram, 307, 308

temporal gauge, 51, 55
thermal Wilson line, 305
thermodynamic limit, 69
thermodynamic quantities, 310
time reflection, 120
time slice, 56, 124, 136
tmQCD, see twisted mass QCD
topological charge, 168
topological sector, 173
topological susceptibility, 170
trace, 3
trace class, 3
Trotter formula, 8, 15
truncated overlap operator, 253
twist angle, 255
twisted mass, 254

physical basis, 256
twisted basis, 256

twisted mass fermions, 253
twisted mass QCD, 253, 256, 258

U(1)
gauge group, 69

random element, 83
representation, 81
unitarization, 82

U(1)A chiral symmetry, 160
ultralocal, 189
universality class, 248, 249
UV-filtering, 201, 202

vacuum, 4
vacuum energy, 5
valence quarks, 133
variational analysis, 148
variational method, 288
vector field operator, 268
vector meson dominance, 291

wall-source, 137
Ward identities, 219, 271

continuum formulation, 270
weak decay constant, 270
weak form factor, 267
weak matrix elements, 294
Weyl fermion, 240
Wick rotation, 7
Wick’s theorem, 109
Wilson fermion action, 110, 112

discrete symmetries, 117
Wilson gauge action, 36, 37
Wilson line, 57, 305
Wilson loop, 54, 64
Wilson term, 113
Witten-Veneziano formula, 170, 171
Wolfenstein parameters, 295

Yang-Mills theory, 28

zero mode, 168
Zolotarev approximation, 181


